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Abstrac t  

A new multisolution phasing method based on entropy 
maximization and likelihood ranking, proposed for the 
specific purpose of extending probabilistic direct meth- 
ods to the field of macromolecules, has been implemented 
in two different computer programs and applied to a wide 
variety of problems. The latter comprise the determina- 
tion of small crystal structures from X-ray diffraction data 
obtained from single crystals or from powders, and from 
electron diffraction data partially phased by image pro- 
cessing of electron micrographs, the ab initio generation 
and ranking of phase sets for small proteins; and the im- 
provement of poor quality phases for a larger protein at 
medium resolution under constraint of solvent flatness. 
These applications show that the primary goal of this 
new method - namely increasing the accuracy and sen- 
sitivity of probabilistic phase indications compared with 
conventional direct methods - has been achieved. The 
main components of the method are (1) a tree-directed 
search through a space of trial phase sets; (2) the saddle- 
point method for calculating joint probabilities of structure 
factors, using entropy maximization; (3) likelihood-based 
scores to rank trial phase sets and prune the search tree; 
(4) efficient schemes, based on error-correcting codes, for 
sampling trial phase sets; (5) a statistical analysis of the 
scores for automatically selecting reliable phase indica- 
tions. They have been implemented to varying degrees 
of completeness in a computer program (BUSTER) and 
tested on two small structures as well as on the small 
protein crambin. The main obstructions to successful ab 
initio phasing in the latter case seem to reside in the ac- 
cumulation of phase sampling errors and in the lack of a 
properly defined molecular envelope, both of which can 
be remedied within the methods proposed. A review of 
the Bayesian statistical theory encompassing all phasing 
procedures, proposed earlier as an extension of the ini- 
tial theory, shows that the techniques now available in 
BUSTER bring closer a number of major enhancements 
of standard macromolecular phasing techniques, namely 
isomorphous replacement, molecular replacement, solvent 
flattening and non-crystallographic symmetry averaging. 
The gradual implementation of the successive stages of 
this 'Bayesian programme' should lead to an increasingly 
integrated, effective and dependable phasing procedure for 
macromolecular structure determination. 
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O. In troduc t ion  

The ab initio determination of macromolecular structures 
by a purely computational solution to the phase problem 
used to be the secret dream of most protein crystallogra- 
phers beginning their careers. A whole decade of biotech- 
nological frenzy may however have distracted the attention 
of many away from this lofty challenge, towards appli- 
cations whose feasibility does not require such a radical 
advance, and it is therefore a particular pleasure to see a 
meeting unashamedly devoted to precisely this high-risk 
endeavour. I hope it will result in a rekindling of interest 
for the subject among the younger generation of crystal- 
lographers. 

In 1984 1 proposed a new multisolution phasing method 
based on entropy maximization and likelihood ranking 
for the specific purpose of extending probabilistic direct 
methods to the field of macromolecules (Bricogne, 1984a, 
hereafter called I). The need for such a new approach 
followed from a critical analysis of direct methods as 
practised at the time - a snapshot of which was captured, 
for instance, in the papers devoted to this topic at the 
Ottawa computing school (Sayre, 1982). This analysis 
brought to light (I, §2) a number of shortcomings in 
the implementation of probabilistic ideas within direct 
methods which made them unfit to tackle macromolecules, 
namely: 

(1) the ubiquitous assumption of a uniform prior dis- 
tribution of the atoms in the crystal in the derivation of 
probabilistic formulae; 

(2) the intrinsic limitations of the Edgeworth series as 
an approximation to joint-probability distributions involv- 
ing many structure factors with large moduli; 

(3) the reinterpretation, for practical purposes, of sharply 
peaked joint-probability distributions as yielding 'esti- 
mates' of triplet and quartet phase invariants, thus giving 
rise to as many 'equations' which were to be 'solved for 
the phases'. 

These objections could be - and were - regarded as 
rather academic in the field of small structures: (1) is only 
a mild concern because small-molecule crystals are usually 
close-packed; as for (2) and (3), the enormous overdeter- 
mination available in a copper sphere of data (typically 50 
to 100 observations per non-hydrogen atom) can be relied 
upon to compensate for any but the most severe method- 
ological deficiencies. In the macromolecular field, how- 
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ever, the situation is much less forgiving: the conjunction 
of (1) and (2) results in the relations normally considered 
in (3) being not only very weak (because they involve 
only a few phases at a time, and the number of atoms is 
large) but also systematically in error (because the pres- 
ence of solvent regions creates extreme non-uniformity in 
the distribution of atoms belonging to the macromolecule); 
and the degree of overdetermination in the data is, except 
in rare cases, much reduced or even non-existent, hence 
unable to remedy these deficiencies. 

As a consequence of this analysis, the main thrust of the 
work published in (I) was to urge a return to the fundamen- 
tal problem of calculating joint-probability distributions of 
structure factors and to find methods better suited to the 
macromolecular field which would increase the accuracy 
and the sensitivity of  probabilistic phase indications. For 
this purpose I proposed the saddlepoint method as a pow- 
erful enhancement of the analytical techniques previously 
used, showed it to be closely related to entropy maximiza- 
tion, and demonstrated both its power and its practical 
applicability by a test calculation on a macromolecule. I 
also pointed out the necessity of adopting a tree-directed 
search strategy and of using likelihood as a look-ahead 
criterion to guide the search according to the principles 
of Bayesian inference. Readers wishing to gain some fa- 
miliarity with the basic notions and the terminology used 
throughout this work (e.g. Edgeworth series, maximum en- 
tropy, saddlepoint method, likelihood) are advised to con- 
suit the present writer's contribution (Bricogne, 1991a) to 
a collection of expository essays on the maximum-entropy 
method. A cursory glance through this paper should at 
least fulfil the r61e of a glossary. 

An implementation of these ideas has been taking place 
in collaboration with Clads Gilmore and coworkers in the 
form of a computer program called MICE (Bricogne & 
Gilmore, 1990). The basic validity of the approach was 
demonstrated by the solution of some test small-molecule 
structures (Gilmore, Bricogne & Bannister, 1990) and by 
the successful identification of the best phase sets pro- 
duced by the SAYTAN procedure of Woolfson & Yao 
(1990) for a small protein (Gilmore, A. N. Henderson & 
Bricogne, 1991). An adaptation of the likelihood criterion 
to intensity data corrupted by overlap (Bricogne, 1991b) 
also enabled MICE to successfully tackle the ab initio 
determination of small inorganic structures from pow- 
der diffraction data (Gilmore, K. Henderson & Bricogne, 
1991; Shanldand, Gilmore, Bricogne & Hashizume, 1992). 
Another related application has been in electron crystallog- 
raphy (Dong, Baird, Fryer, Gilmore, MacNicol, Bricogne, 
Smith, O'Keefe & Hovmoller, 1992) where MICE was 
able to extend initial phases to 3 A resolution for a pro- 
jection of perchlorocoronene, obtained from electron mi- 
crographs by image-processing techniques, to the full set 
of 1 A resolution amplitudes measured by electron diffrac- 
tion. In macromolecular crystallography Charles Carter 
and co-workers have shown at this meeting (Xiang, Carter, 
Bricogne & Gilmore, 1993) that MICE can be used to 

carry out phase extension very effectively by entropy 
maximization to maximum likelihood, a technique which 
yields results far superior to conventional solvent flatten- 
ing when some initial phase information is available to- 
gether with a sufficiently good molecular envelope. In all 
these applications it was noted that the combination of 
the saddlepoint approximation and of likelihood as a deci- 
sion criterion did provide a degree of sensitivity hitherto 
unachievable by other methods. 

The theoretical work initiated in (I) was subsequently 
extended (Bricogne, 1988a, hereafter called II) by incorpo- 
rating into the calculation of probabilities and likelihoods 
all sources of phase information normally used in macro- 
molecular crystallography, thus defining an extensive re- 
search and programming project. Here I will describe 
my own computer program called BUSTER (Bdcogne, 
1991d, e), the purpose of which is precisely to serve as 
an experimental medium for the systematic implementa- 
tion of this comprehensive Bayesian scheme. The program 
has been written entirely from scratch rather than as an ex- 
tension of an existing direct-methods package or tradition. 
It incorporates many hitherto unpublished items of what 
might be called 'mathematical technology', of which the 
saddlepoint method may be viewed as the first. These have 
been developed to provide new and sometimes radical 
solutions to several classical problems of direct methods 
such as the processes of normalization, of origin definition, 
of enantiomorph discrimination, of phase permutation and 
of extraction of reliable phase indications. These are de- 
scribed here at the level of pre-publication outlines, pend- 
ing fuller accounts in separate papers. The applications 
have been directed specifically towards macromolecular 
structures, although smaller ones have also been used for 
testing. 

The present meeting is the first opportunity to present 
this body of work in the very context in which it was 
conceived. I hope this will result in a clearer perception 
of its internal logic and of the mathematical technology 
it mobilizes, both by macromolecular crystallographers 
and by those practitioners of conventional direct methods 
who feel that the accumulation of practical experience had 
perhaps obscured the mathematical essence of the subject. 

The programming project defined in (I) and (II) is 
still only in the early stages of its realization. However 
the applications carded out so far demonstrate beyond 
reasonable doubt that the expected gains in accuracy and 
sensitivity have indeed materialized, and suggest strongly 
that the ab initio phasing of macromolecular structures is 
now within reach. 

I. Overview of theory and implementation 

I.I. Theoretical summary 

The rationale of the theory on which this work is based 
has been described in many publications (Bricogne, 1982, 
1984a,b, 1988a,b, 1991a,b,c) so it will only be outlined 
here. It views an unknown crystal structure as made up of 
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atoms with known chemical identity but unknown posi- 
tions, and considers the latter as random, with an initially 
uniform distribution in the asymmetric unit of the crystal. 
Structure determination consists in the gradual removal of 
that randomness. For this purpose, limit theorems of prob- 
ability theory are invoked to estimate the joint-probability 
distribution of suitably chosen structure factors; formal 
substitution of the observed amplitudes of the latter into 
these distributions is then expected to yield conditional 
joint distributions for the phases, indicating that certain 
combinations of phase values are more probable than oth- 
ers once the amplitudes are known. 

Traditionally the Edgeworth series was used to approx- 
imate joint distributions, but this turns out to be unsuitable 
for large structure-factor amplitudes. In addition, this se- 
ries was previously derived under the assumption that the 
distribution of the random atomic positions is always uni- 
form - a severe handicap in the macromolecular field be- 
cause of the existence of solvent regions. These limitations 
can be overcome simultaneously by using the saddlepoint 
method instead of the Edgeworth series; this always yields 
optimal estimates of joint probabilities involving large am- 
plitudes, and is equivalent to requiring that the distribution 
of random atomic positions should be updated whenever 
phase assumptions are made so as to retain maximum en- 
tropy under the constraints embodied in these assumptions. 
As discussed elsewhere (Bricogne, 1991a) this approach 
does not amount to a wholesale adoption of the so-called 
'maximum-entropy principle' but instead to a consolida- 
tion of the analytical apparatus of direct methods. 

This revised statistical analysis of the phase problem 
leads naturally to a general multisolution strategy of struc- 
ture determination (I, §2.4, §8.1) in which the space of 
hypothetical phase sets is to be explored in a hierarchical 
fashion by building a search tree, similar to those used 
in game-playing computer programs. Each trial phase set 
is ranked according to a certain statistical criterion (the 
log-likelihood gain, or the Bayesian score) which acts as 
a heuristic function in guiding the subsequent growth of 
the tree. 

cedure), near the maxima of the structure-factor graph for 
that reflexion, in accordance with its known or assumed 
phase. For very small structures a strong scatterer or frag- 
ment tentatively placed in this way can be treated as a 
'heavy atom' and used to try and complete the structure. 
The chances of success of such an attempt will depend 
crucially on whether the tentative placement of the strong 
scatterer or fragment can account not only for the strong 
reflexions used in inferring that placement, but also for the 
most salient features in the pattern of intensities in the rest 
of the data: if these features are correctly predicted, there 
is a good chance of being able to complete the structure 
by subsequently placing the remaining atoms. 

The present method consists in a statistical generaliza- 
tion of this simple idea, in which assumed phases for a 
'basis set' of strong refiexions give rise not to a tentative 
position for some dominant scatterer but to a tentative 
redistribution of the random positions of all scatterers. 
By virtue of the maximum-entropy criterion used in its 
construction, this redistribution is the most non-committal 
with respect to the rest of the data: it is therefore a much 
safer decision than the tentative placement of a 'heavy 
atom', so that it can use reflexions which are merely 
strong rather than outstanding, and scatterers which need 
not be dominant. In spite of this minimal commitment, 
the maximum-entropy redistribution of the scatterers can- 
not help but predict (via maximum-entropy extrapolation) 
certain biases in the intensity distribution outside the basis 
set. The log-likelihood gain affords a measure of the de- 
gree of corroboration of that prediction (and hence of the 
basis-set phase assumptions on which it is based) by the 
observed intensities of the non-basis reflexions, and hence 
the increase in the chances of being able to 'complete the 
structure' by introducing more reflexions into the basis 
set. In this sense it is a 'look-ahead' criterion. 

To summarize, the present multisolution strategy may 
be thought of as a statistical, quantitative but 'model-free' 
version of the intuitive and simple methods mentioned 
above. 

1.2. Intuitive content of the method 
In spite of the relative mathematical complexity of its 

detailed formulation, this method has a simple intuitive 
content which may be easily grasped by reference to the 
use of 'structure-factor graphs' (Bragg & Lipson, 1936; 
Lipson & Cochran, 1968, pp. 77-82) in the structure de- 
termination of penicillin (Crowfoot, Bunn, Rogers-Low 
& Turner-Jones, 1949) or of outstandingly strong reflex- 
ions (Lipson & Cochran, 1968, pp. 134-136) in solv- 
ing hexamethylbenzene (Lonsdale, 1929) and coronene 
(Robertson & White, 1945). In these procedures a strong 
Bragg reflexion is interpreted as indicating a bias, away 
from uniformity, in the distribution of atomic positions. 
This leads to placing any strong scatterer (in the first pro- 
cedure), or planar molecular fragment (in the second pro- 

1.3. Principles of implementation 
The purpose of this section is to establish the termi- 

nology which will be used throughout in describing the 
mathematical methods, in analysing the detailed logic of 
the program and in discussing the results. 

The first step is always the determination of global scale 
and temperature factors to put the observed amplitudes 
on absolute scale, allowing the calculation of unitary and 
normalized structure-factor amplitudes IUhl and IEhl. This  
normalization is carded out by a maximum likelihood 
method, allowing the use of an arbitrary non-uniform 
distribution re(x) for the random atomic positions and 
the incorporation of known partial structures and/or non- 
crystallographic symmetries. The resulting absolute scale 
is not considered as having a permanent value, but is 
instead recalculated whenever any new assumptions are 
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introduced so as to maintain likelihood at a maximum (see 
§2.1.3). Usually the initial normalization corresponds to a 
uniform distribution re(x) ffi 1/vol(V) where V denotes the 
unit cell and vol(V) its volume. 

At any stage of the calculation, the symmetry-unique 
non-origin reflexions are divided into two sets: the basis 
set H = {hi, h2, ..., hln I } comprising those IHI reflexions 
for which explicit phase assumptions have been made, 
and the complementary set K of non-basis reflexions for 
which amplitude measurements are available but which 
are unphased. A node v of the phasing tree consists of 
a set ~(v) ffi {~,,(hl), qo~,(h2) ..... qa~,(hlnl)} of trial phase 
values for the reflexions in H. The basis set is extended 
in the course of the calculation by incorporation of new 
reflexions, defining successive levels of the phasing tree. 
Each node at level l has a unique parent node at level 
l - 1 and may have a progeny at level l + 1. The process 
of generating the progeny of a node (which may be of 
arbitrary size) is called the expansion of that node and 
consists in appending trial phase values for the reflexions 
incorporated as the latest level of the basis set to the phase 
values belonging to the original (now patent) node. 

Given a node v with corresponding basis set H, the 
unique distribution ~ having maximum entropy com- 
patible with the data attached to v is constructed by max- 
imizing the relative entropy 

S i n ( q )  ffi - f q(x)log[q(x)/m(x)]d3x (1.1) 
V 

under the constraints 

f q(x)exp(2~rih.x)d3x = IUhl°bSexp[i~,(h)] 
V 

for all hEH (1.2) 

Besides reproducing the amplitudes and phases attached 
to v for reflexions in H, @ME has Fourier coefficients 
U ~  with non-negligible amplitude for many non-basis 
reflexions kEK. This is especially the case when k is in 
the second neighbourhood A/'2(H) of H: 

.N'2(H) ffi {UNIQUE(hi + RTh2) I hlEH, h2EH, gEG} 

(1.3) 

where G is the space group of the crystal, R :  denotes 
the transpose of the integer matrix associated to gEG, and 
UNIQUE(h) denotes the unique representative of h under 
symmetry and Friedel equivalence. This maximum-entropy 
extrapolation from H into A/'2(H) causes the conditional 
distribution of I U~,,kl to deviate systematically, in a manner 
which depends on the phases (I,(v) attached to node v, 
from the Gaussian or Rayleigh distributions of Wilson 
statistics (corresponding to I U~]  ffi 0) and to become a 
Rice distribution instead. We may formalize this situation 
by denoting (7~0) the null hypothesis that the atoms are 
uniformly distributed, and denoting by (7"/1) the alternative 
hypothesis that they are distributed according to ~q~. 
These two hypotheses can be tested against each other 

by calculating the log-likelihood gain: 

LLG(v) = 

logP {I Uk I=l Uk I °b" for keKlUh=lUhl °b~exp[iqo,, (h)] for he H} 
(IUkl=lUkl ob~ for keK I U h=0 for hel l)  

(1.4) 

where 7:'(BIA) denotes the conditional probability of event 
B if event A is assmned to have occurred. LLG(v) will 
be largest when the phase assumptions attached to v lead 
one to expect deviations from Wilson statistics for the 
unphased amplitudes IUkl, keg ,  that most closely match 
those present in the distribution of the actual measure- 
ments IUkl~: it is therefore a quantitative measure of the 
degree of corroboration by the unphased data of the phase 
assumptions attached to v. 

The tree-directed search through all possible combina- 
tions of phases is carded out by successive incorporations 
of reflexions initially in K to form the successive levels of 
H. The first major problem is to decide which reflexions to 
pick at each of these steps. A selected subset of the nodes 
at the previous level is then subjected to node expansion 
by giving 'permuted' values to the phases of the newly 
incorporated reflexions, and the second major problem is 
to design optimal methods for sampling the vast number 
of possible phase sets. Each progeny node v generated 
in this way is evaluated by numerically constructing the 
corresponding q ~  and calculating the log-likelihood gain 
LLG(v) resulting from the maximum-entropy extrapola- 
tion into A/'2(H). The LLG may then be used to prune the 
search tree by retaining only those nodes with the highest 
LLG values, or used in some form of post-processing to 
detect and recycle phase indications. The third problem 
is then to make such decisions automatic and reliable. 
This procedure is essentially Bayesian, the consideration 
of the LLG alone often being justifiable by the fact that 
it consults much more experimental data than does the 
entropy loss S(v)ffi Sm(~q~). The full 'Bayesian score' 
B(v) ffi NS(v) + LLG(v), where N is the number of non- 
hydrogen atoms in the asymmetric unit, has also been 
successfully used in the applications described below; it 
measures the increase in the logarithm of the a posteriori 
probability of the measured amplitudes, compared with 
that given by Wilson statistics. 

The implementation of this scheme within BUSTER is 
fully automatic, space-group general, and accommodates 
any mixture of centric and acentric reflexions. 

2. Mathematical technology 

2.0. Introduction 
Most phasing methods consist in designing a score 

whose maximization with respect to the phases is supposed 
to encourage the buildup of some desirable property of 
the distribution of atomic positions. The scores used in 
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conventional direct methods and in the present approach, 
although very similar in principle, differ greatly from a 
practical point of view. 

In conventional direct methods the primary concept is 
that of phase relation; the score is a secondary concept 
and is rather loosely defined as a consistency criterion 
between large numbers of phase relations. This has the 
advantage that once such a criterion has been chosen, it 
comes automatically with an explicit and global functional 
representation in terms of the phases, and thus lends itself 
to symbolic processes such as, for instance, elimination or 
least-squares solution. The drawback is that this functional 
representation is not accurate (I, §2.1) so that by the 
time a large subset of phase values has been obtained 
or assumed on a trial basis, their relations with the other 
phases and the relations between the other phases are no 
longer well represented (if only because the normalization 
should be redone). Forttmately, the overdetermination of 
the relations helps overcome their low individual accuracy 
so that the score remains useful. 

In this approach the score is defined from first principles 
and as a result enjoys various properties of optimality: that 
of the saddlepoint approximation is well known (I, §5.3; 
Bricogne, 1991a, §8.3.6), and the optimality of likelihood 
as a hypothesis-testing criterion is asserted by a fundamen- 
tal theorem of Neyman & Pearson (1933). Unfortunately 
the mode of construction of this score only gives a method 
for its accurate pointwise evaluation and does not provide 
a global functional representation. Indeed the possibility 
of the latter is ruled out by the very analysis (the problem 
of large deviations, see I, §2.1) on which the method is 
based and which dictates the use of a phasing tree. 

To overcome this handicap and have the best of both 
worlds, two strategies may be used: either (1) calculate a 
large number of scores on a grid of trial phase values, then 
carry out a Fourier analysis or apply some interpolation 
scheme to recover an accurate and global functional rep- 
resentation of the score, at least with respect to that subset 
of phases; here the grid must be chosen to economize the 
number of (expensive) evaluations (see §2.2.2) and thus 
allow calculations on the greatest number of phases si- 
multaneously; or (2) use Taylor expansions around fewer 
grid points to build local approximations to the desired 
functional dependence; then use pointwise evaluations in 

regions of interest to improve accuracy [see §2.2.3 (6)]. In 
both cases efficiency will depend critically on the choice 
of the grid and on the careful selection of sets of reflexions 
which are most strongly coupled with each other. 

The mathematical techniques around which BUSTER 
has been written fall into three main categories. First, 
the techniques of calculation of probabilities and likeli- 
hoods, based on structure-factor algebra, the solution of 
the maximum-entropy equations, and the evaluation and 
maximization of likelihoods with respect to a great variety 
of parameters. Second, the multidimensional search tech- 
niques used in the optimal scheduling of basis-set growth, 
in designing efficient phase-sampling schemes and in sur- 

veying multidimensional Fourier series approximations to 
the score function. Third, the numerical and statistical 
techniques used in analysing the likelihood-based node 
scores and making reliable and automatic decisions about 
the pruning of  the phasing tree and its subsequent 
growth. 

• 2.1. Calculation of probabilities and likelihoods 
2.1.0. Structure-factor algebra and statistics. The cal- 

culation of moments of trigonometric structure-factor 
expressions under assumptions of non-uniform random 
distribution of atomic positions rests on a fundamental 
algebraic identity, the Bertaut linearization formula, the 
importance of which could not be overstated. The pri- 
mary references for this material are Bertaut (1955a,b,c, 
1956a,b, 1959a,b), Bertaut & Dulac (1956) and Bertaut 
& Waser (1957). Bertaut used this formula to identify 
non-vanishing moments when the atoms are uniformly 
distributed. The extension of his theory to non-uniform 
distributions of atoms and to more general situations was 
first given in §A 1 and §A2 of (II). 

The contribution E(h,x) of a point atom of unit scat- 
tering factor placed at x to the structure factor at h may 
be written: 

E(h,x) -- (l/IGzl) ~ exp[27rih.Sg(x)] (2.1) 
gEG 

where Gx is the isotropy subgroup of x and IGxl denotes 
the number of its elements. If we consider this quantity 
as a function of x indexed by h, the family of functions 
defined by --h(x) --- --(h,x) constitutes an algebra in the 
sense that products of such functions may be rewritten 
as linear combinations of other functions in that family, 
generalizing well known trigonometric identities such as 
cosacosb = (1/2)[cos(a + b) + cos(a - b)l. This relation 
is given by Bertaut's linearization formula: 

E(h,x) x E(k,x) -- (1/IGxl) ~ exp(27rik.tg)-(h + R~k,x) 
gEG 

(2.2) 

(see §A2 of II for a proof). 
Let the position x of a generic atom now be considered 

as a random vector distributed in the asymmetric unit D of 
the crystal with probability density q(x). The trigonomet- 
ric structure-factor expressions Eh(x) then become random 
variables with complex or real values, and the calculation 
of their moments is a fundamental operation in the sta- 
tistical approach to the phase problem. For our present 
purposes, only moments of  order 1 and 2 will be 
needed. 

Let Mh [or M(h)] denote the Fourier coefficient with 
indices h of the function obtained by symmetry-expanding 
q(x)/]Gxl to the whole unit cell and renormalizing it. Then 
the first-order moment of Eh is 

(~h) = [G[Mh (2.3) 
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while the second-order moments can be obtained, by lin- 
earizing according to (2.2), as 

(~h~±l t )  = IGI Y~ exp(±27rik.ts)m(h ± Rrk). (2.4) 
9EG 

At this point it becomes desirable to take into account 
the centric character of the reflexions by defining: 

O~h = ReEh, f3h = ImEh for h acentric (2.5a) 

7h = Re[exp(-i0h)Eh] for h centric (2.5b) 

where, for h centric, 0h = 7rh.t s with g any element of 
the group G such that Rrh = -h. Elementary calculations 
according to a general procedure described in §A1 and 
§A2 of (II) then yield the following expressions for the 
second-order moments: 

( O~hO~k) ffi 

(/~hflk) ffi 

(O~h')'k) = 

(/oh')'k) = 

("f h"/k) = 

( 1 / 2 ) ( R e ( ~ h ~ + k )  + R e ( ~ h ~ - k ) )  (2 .6a )  

( l [ 2 ) 0 m ( ~ h ~ + k )  - I m ( ~ h ~ _ k ) )  (2 .6b)  

( l / 2 ) ( I m ( E h ~ . + k )  + Im(~ .hE_l t ) )  (2 .6c)  

(1/2)(Re(EhE_n,) - Re(EhE+k)) (2.6d) 

( l/2)Re[exp(-iOk)(Eh E÷k) 
+ exp(+i0k)(Eh E_l,)] 

( 1/2 )Im[exp(-i0k) (Eh E÷k) 
+ exp(+i0k)(Eh E-k)] 

(1/2)Re { exp[-i(0h + 0k)] (Eh E+k) 
+ exp[-i(0h - 0k)] (Eh E-k) }. (2.8) 
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(2.7a) 

(2.7b) 

These formulae, considered together with (2.3) and 
(2.4), completely specify the elements of the vector of first 
moments and of the covariance matrix of the trigonometric 
structure-factor expressions under the assumption of an 
arbitrary distribution q(x) of random atoms. They are 
implemented in two distinct ways in BUSTER: 

(1) with h = k to generate the individual trigonometric 
covariance matrices Vhh for all reflexions h to be included 
in a likelihood calculation using the block-diagonal ap- 
proximation, viz, 

(O~hflh) -- (O~h)(/oh) 
(/0h/0h) -- (/oh)(/oh) ) 
for h acentric, (2.9a) 

((O~hO~h) --(O~h)(O~h) 
V h h  = (/~hO~h) -- (/~h)(O~h) 

V h h  --  (("Yh~'h) -- ("Yh)(~fh)) for h centric; (2.9b) 

(2) with h, kEH to generate the Hessian matrix of log Z 
which is later used to solve the maximum-entropy equa- 
tions (§2.1.1) and compute the saddlepoint approximation 
(§2.1.2). 

2.1.1. Solving the maximum-entropy equations. The cen- 
tral numerical task in the process described in §1.3 and 
§3.5 consists in satisfying the saddlepoint condition - 

• or, in an equivalent terminology, solving the maximum- 
entropy equations (see §5.4 of I and §0.5 of II for the 
details of this equivalence). In the notation used in (II) 

the general form of these equations is 

vx(log Z) = F* (2.10) 

where F* is the vector of trial structure-factor values 
for the basis-set reflexions and log Z is the cumulant- 
generating function of the distribution of F. Its Hessian 
(the covariance matrix of F) is positive definite, which 
guarantees that there is a one-to-one correspondence be- 
tween A and the gradient vector of log Z at A wherever 
it is defined, and hence that the solution to the maximum- 
entropy equations, if it exists at all, is unique (I, §5.2, 
§6.1.2). The global convexity of log Z as a function of X 
makes Newton's method very effective at solving (2.10) 
for small values of the total dimension n. The elements 
of the Hessian matrix can be evaluated at each iteration 
by means of expressions (2.6a,b,c,d), (2.7a,b) and (2.8) 
from the Fourier coefficients of the current approximation 
to the maximum-entropy distribution, as pointed out in 
§7.1.1 of (I). 

It is worth noting that the maximum-entropy equations 
are not solved by maximizing the entropy ,9 with respect 
to A: S is globally concave as a function of the constraint 
values F*, but not as a function of the Lagrange multipliers 
A. The transformation of the constrained maximization 
of S into the problem of solving equations (2.10) is an 
instance of the use of duality and rests in this particular 
case on the Legendre duality which relates S and log Z. 
This duality may be visualized geometrically (see Fig. 
1 for a one-dimensional illustration) as the equivalence 
between 

(1) finding the unique A* where log Z has a gradient 
(here, slope) equal to F*; 

(2) finding the unique A* where the Lagrangian 
£(A) = log Z(A) - A.F* is a minimum, causing the graphs 
corresponding to the two summands to be tangent at the 
desired A*. 

Analytically, this equivalence amounts to the trivial 
rewriting of (2.10) as 

vx( logZ - A.F*) = 0, (2.11) 

the positive-definiteness of the Hessian guaranteeing that 
any stationary point of £ is indeed a minimum. Set- 
ting up Newton's method to solve (2.10) or (2.11) leads 
to identical numerical computations, but the latter form 
makes more conspicuous a very useful property of the 
Lagrangian £: for X other than A*, the value of the La- 
grangian £(A) {which may be read off as the intercept 
with the vertical axis of the line through the point [A, 
log Z(A)] with slope F*} gives an upper bound on the fi- 
nal entropy $(X*) (similarly marked as an intercept in Fig. 
1), while at the solution £(X*) = $(X*). From the practical 
point of view this bounding property of the intermediate 
values of the Lagrangian can be exploited to endow the 
duality method with extraordinary robustness. An ordinary 
Newton method would occasionally overshoot past X* (es- 
pecially in multidimensional situations), giving rise to per- 
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ilously unstable behaviour. By contrast, the systematic use 
of a line search along the direction indicated by Newton's 
method so as to make £(A) a minimum along that direc- 
tion will guard very effectively against such overshoots 
and keep the algorithm stable even under very demanding 
conditions. 

The use of duality for solving general maximum-entropy 
equations was first suggested by Alhassid, Agmon & 
Levine (1978) and its implementation was described by 
Agmon, Alhassid & Levine (1979). It is this method which 
is used in BUSTER: the Hessian matrix is calculated in full 
by (2.6a,b,c,d), (2.7a,b) and (2.8) at each cycle, and the 
line search along the Newton direction is carried out by 
the method of Davidon (see Scales, 1985, pp. 39-40). This 
algorithm is extremely robust, and most of the time is con- 
sumed in calculating fast Fourier transforms which, since 
they are to be exponentiated with minimal aliasing, must 
be very finely sampled. When the number of reflexions in 
the basis set H exceeds a few hundred, a matrix method 
is no longer practical and the exponential modelling tech- 
nique with line or plane search, described by Bricogne & 
Gilmore (1990), may be used. 

Recently Prince and coworkers (Prince, 1989; Collins & 
Prince, 1991; S]61in, Prince, Svensson & Gilliland, 1991) 
have separately re-examined the problem of solving the 
maximum-entropy equations, and it may be useful to give 
a brief review of similarities and differences between the 
various approaches. The Fourier coefficients of their ex- 
ponential model are the Lagrange multipliers A (I, §7.1.2). 
The use of duality to turn the constrained maximization 
of ,5 into the unconstrained minimization of £ is the same 
as that proposed by Agmon et al. (1979). The possibility 

log Z 

S(A) 

£(A) 
S(A*) 

Fig. 1. Schematic graphical representation of the solution of the 
maximum-entropy equations for n " 1. The solution A* is the value 
of A where the graph of logZ as a function of A has a slope equal to 
the constraint value F*; the solution is unique because of the convex- 
ity of that graph. For A other than A*, the value of the Lagrangian 
£(A) gives an upper boundary on the final entropy S(A*), while at 
the solution £(A*) I S ( A * ) .  

of expressing the elements of the Hessian matrix in terms 
of the Fourier coefficients of the current estimate of the 
ME density was described in (I). The linearization of the 
product of two cosines given in Collins & Prince (1991) 
and in Sj61in et al. (1991) is the P1 version of structure- 
factor algebra, and hence does not make full use of sym- 
metry; whereas the general formula, given by equation 
(7.7), §7.11 of (I) and implemented here, which uses the 
full structure-factor algebra for the space group at hand, is 
both general and optimal. Prince's implementation of the 
duality method avoids the computation of the full Hessian 
by using a quasi-Newton method, the BFGS procedure 
[see Press, Flannery, Teukolsky & Vetterling (1986, pp. 
308-309), or Scales (1985, pp. 89-90)], but this is of no 
avail here since the Hessian is required to compute the 
saddlepoint approximation to T'(F*), as shown by equa- 
tions (2.12) to (2.14) below. 

2.1.2. The saddlepoint approximation. Once the maxi- 
mum-entropy equations have been solved with data F* the 
saddlepoint approximation T'SP(F *) to the joint probability 
of the components of F* is given by (I, §5.3; II, §0.4): 

where 

and where 

T~SP(F *) = exp(S)/[det(27rQ)] 1/2 (2.12) 

Q = V v r ( l o g  Z) (2.14) 

is the Hessian matrix used in (and hence obtained as a 
by-product of) solving the maximum-entropy equations. 

A remark is in order at this point so as to avoid a possi- 
ble misunderstanding - even an apparent paradox - about 
the fact that det Q is in the denominator and thus would 
be encouraged to become small, whereas the conventional 
wisdom (Tsoucaris, 1970) has it that such a determinant 
should be maximal. The crucial observation is that Q is a 
Goedkoop matrix associated with qME, and therefore is not 
an ordinary Goedkoop matrix (Goedkoop, 1950) until all 
reflexions are in the basis set. It is normally rather sparse, 
as its elements are made up precisely of the maximum- 
entropy extrapolates attached to the second neighbourhood 
of the basis set [see equations (1.3) and (2.4)-(2.9)]. It is 
therefore the need to keep the LLG as large as possible, i.e. 
the requirement that these extrapolates should agree well 
with the unphased data, which prevents this matrix from 
becoming singular. Since the largest off-diagonal elements 
correspond to triplets within the basis set, this observation 
sheds new light on the subtle way in which the LLG will 
prevent intra-basis-set relationships from becoming over- 
consistent. It also shows that if and when the LLG does 
endorse a strong maximum-entropy extrapolation pattern, 
the rank of Q will level off, causing det Q to drop rapidly; 
the loss of entropy will slow down (since the future con- 
straints have already been largely anticipated), and there- 
fore 79sP will start to soar, signalling that the atomicity 

S = logZ(X) - X.F* (2.13) 
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of the structure has now taken over as the main agent of 
phase extrapolation. This should happen when the num- 
ber of reflexions approaches the number of atoms, or more 
generally of 'effective scatterers' at low resolution. This 
behaviour has been observed with small molecules as the 
related phenomenon of a sudden decrease of the 2? param- 
eter in the MICE program (Gilmore et al., 1990; Shanldand 
et al., 1992) and has been investigated in another context 
by J. Navaza (personal communication). The role of the 
determinant - which, it may be noted, does not appear in 
the pure ME theory - is therefore an important one in sig- 
nalling, albeit in a rather unexpected way, the successful 
completion of a structure determination. 

2.1.3. Likelihood evaluation and maximization. All cal- 
culations related to the evaluation of log-likelihood for a 
given hypothesis (7/) and its optimization with respect to 
any set of parameters associated with that hypothesis are 
carded out in a single routine, MLNORM. 

Typically a hypothesis is specified by the following 
entities (which are not all independent): 

(1) the list {U~¢~[ h observed} of Fourier coefficients 
of ~ for the observed reflexions; 

(2) the diagonal blocks Vhh of the trigonometric co- 
variance matrix calculated as described by (2.9a,b) for all 
observed reflexions h; 

(3) the sums crl(h) and tz2(h), calculated over the unit 
cell, of first and second powers of the scattering factors of 
the random atoms which are distributed according to qlV~; 

(4) the list {FhI~[ h observed} of structure factors for 
a partial structure, if any is specified, together with the 
partial temperature factor B ~  such that the structure factor 
at h for the complete structure be distributed with mean 
value 

(Fh) ffi (71(h)U~ + exp[-(l/4)BPar(d~,)2]Fh par (2.15) 

and covariance matrix 

Qhh -- tr2(h)Vhh (2.16) 

(5) the overall scale factor k and temperature 
factor B such that the structure-factor amplitudes 
kexp[-(1/4)B(a~h)2][Fh[ °bs be on absolute scale. 

As stated earlier (§ 1.3), k and B are defined implicitly 
in terms of the other parameters by the condition that the 
log-likelihood L be a maximum with respect to them: 

L(7/) - L(p, q . . . .  ) - logm, a~ A(k, B ,p ,  q, ...) (2.17) 

where p, q, ... stand for the collection of parameters in 
(7/) other than k and B, and the likelihood function A is 
the conditional probability of the observations under (7/). 

The current program uses an approximation to condi- 
tional probabilities, called the block-diagonal approxima- 
tion, which consists in using as a covariance matrix Q 
a block-diagonal matrix consisting of the blocks Q de- 
fined above. This decouples the various reflexions so that 
the resulting log-likelihood L may be written as a sum of 

contributions Lh from individual reflexions 

LLG(v) = 

E l°g~{IUkl=lUkl°b~ [ Uh=[Vh[°b%xp[iq°~'(hl] forheH} 

kEK 
P(]Uk]=IUk] °b~ ] Uh=0forheH) 

(2.18) 

An exact expression has been obtained for the log- 
likelihood, using a general symmetric rather than block- 
diagonal covariance matrix for the Gaussian conditional 
probability out of which phases and signs are to be inte- 
grated. It will be published separately in a sequel to (H). 

Two types of likelihood functions are used: (i) phased 
likelihoods for basis-set reflexions, and (ii) unphased like- 
lihoods for non-basis reflexions. The rationale for using 
a phased likelihood for basis-set reflexions is to reflect 
faithfully the increased probability of the phased values 
and let it offset the loss of entropy caused by that fitting. 
It is easily checked that, to the quadratic approximation, 
the phased LLG exactly compensates the effect of the en- 
tropy loss (for equal atoms), so that the Bayesian score 
remains stationary to begin with. 

For each likelihood type, one must distinguish the cen- 
tric case from the acentric case. 

(i) Phased likelihood. In the acentfic case, writing a 
complex F as a 2-vector F: 

7~(Fh) = [ 1/27r(detQhh)V2]exp[-(1/2)(Fh - (Fh))TQh~l 

× (Fh - (Fh))] (2.19) 

while in the centfic case (Q~  is then a scalar): 

P(Fh) ffi [1/(2~rQhh)m]exp[-(1/2Qhh)lFh - (Fh)]2]. 
(2.20) 

Then 

L h ( 7 / )  = log P { kexp[-(1/4)B(d~,)2]]Fh[°bsexp(i~oh) }. 
(2.21) 

If qME is constructed by solving the maximum-entropy 
equations exactly, the exponential is equal to 1 and only 
the normalization factor contributes. For the null hypoth- 
esis, (Fh) " 0 and the variances are given by Wilson sta- 
tistics, viz. Vhh ffi diag[(1/2)eh, (1/2)eh] for h acentric and 
Vhh ffi eh for h centric, where eh is the statistical weight 
(Stewart & Karle, 1976; Iwasaki & Ito, 1977; Stewart, 
Karle, Iwasaki & Ito, 1977). 

Strictly speaking, the basis-set constraints should not be 
fitted exactly, but only as far as will result in an increase 
in the Bayesian score (i.e. in the a posteriori probability 
of these phases). This remark will be implemented in the 
near future as a phase refinement mechanism. 

(ii) Unphased likelihood. In the acentric case, the cur- 
rent program uses an approximation to the exact like- 
lihood, obtained by replacing the 2 x2 matrix Qhh by 
diag(~Tg, £7g) with ~7[~ = (detQhh) v2. This leads to a Rice 
distribution (Rice, 1944, 1945) for the amplitude [Fhl and 



C O N F E R E N C E  P R O C E E D I N G S  45 

hence to: 

Lh(~) = log 7~1 (Fh), kexp[-( l/4)B(d~)2]lFh[ °bs, 276} 
(2.22) 

where 

R(r, R, ~7) = (P,/S)exp[-(r 2 + R2)1227]lo(rRlS). (2.23) 

In the centric case, putting 27~ = Qhh, one has a centric 
Rice distribution and hence: 

Lh(7~) = log C { (Fh), kexp[-(l/4)B(d~)2]lFhl °b~, ~ } 
(2.24) 

where 

C(r, R, ~7) = (2/Tr27)l/2exp[-(r2 + R2)/2S]cosh(rR/S). 

(2.25) 

The null-hypothesis values are obtained by the same sub- 
stitutions as were described for phased likelihoods. 

The refinement of k and B is the simplest instance 
of optimization of the global LLG with respect to cer- 
tain parameters attached to (7~). Other instances would 
be its optimization with respect to the rotational and 
translational parameters defining the placement of the frag- 
ment(s) which constitute the partial structure and with re- 
spect to the associated B factor(s), and with respect to the 
components of the U~ IE for the purpose of phase refine- 
ment. 

In anticipation of these developments, and of others re- 
lating to the MIRAS and MAD methods, and to the use of 
non-crystallographic symmetry, a general procedure has 
been programmed for systematically applying the chain 
rule to the calculation of first- and second-order deriva- 
tives of nested functional expressions. For the first-order 
derivatives this is the well known multiplication of gradi- 
ents by Jacobian matrices; more involved expressions are 
needed to propagate second-order derivatives. The avail- 
ability of the latter gives access to the use of the New- 
ton-Raphson method (if desired) in all refinements, but 
more importantly it allows the detection of bifurcations 
along directions with negative curvature in the course of 
phase refinement (see e.g. I, §7.2). 

2.2. Multidimensional search techniques 
2.2.1. Optimal scheduling of basis-set growth. The large 

number of atoms in macromolecules results in the general 
weakness of individual phase interactions, although those 
mediated by the presence of solvent regions and/or by 
non-crystallographic symmetry are notable exceptions to 
this rule. This is reflected in the relative weakness of the 
maximum-entropy extrapolation pattern outside the basis 
set. If the criteria constructed in §2.1 are to be of any 
use in discriminating good trial phase sets from bad ones, 
and thus avoid a bush-like growth of-the phasing tree, 
their sens,.'tivity to these phases must be maximized. This 

can be achieved by carefully planning the progressive 
enlargement of the basis set so as to concentrate the 
maximum number of the available interactions at the early 
stages of the tree growth. This is a well known concern 
in standard direct methods. It has been my experience 
that choosing basis-set reflexions as a function of their 
strength alone, as described by Sj61in et al. (1991), is very 
unlikely to produce the necessary concentration of phase 
interactions. 

The following procedure, implemented in routine COB- 
WEB, has been designed to maximize the sensitivity of the 
LLG or of the Bayesian score with respect to the basis-set 
phases at any stage of its growth. 

(1) Identify the 'strong' reflexions (as defined for the 
current shell of data - see §3.1) eligible as basis-set 
candidates, and add them to the existing basis set (if any) 
to form a mock basis set. 

(2) Compile a list of the effects of maximum-entropy 
extrapolation from these candidates on the offsets and the 
variances of the conditional distributions of the reflexions 
in the second neighbourhood of the mock basis set, calcu- 
lating their strength from the partial derivatives of the en- 
tropy, of the determinant (§2.1.2) and of the log-likelihood 
gain. 

(3) Eliminate the newly introduced candidates from 
the mock basis set one by one, by taking out at each 
stage that candidate which is most weakly coupled to the 
reflexions still in the mock basis set, and disabling all 
interactions in which it is involved. The reverse order of 
elimination is then the optimal order of 'priority' in which 
reflexions should be incorporated into the basis set so as 
to maximize the sensitivity of the Bayesian score to the 
associated phase values, in the sense of maximizing the 
range of variation of the score around its mean value. A 
record is kept of the interactions which are lost when each 
reflexion is eliminated, i.e. gained when it is introduced. 
This record can later be accessed to generate a list of 
multidimensional Fourier coefficients (see §2.2.2 below) 
giving an approximate functional representation of the 
score as a Fourier series in the phases associated to any 
segment of consecutive reflexions in this priority list. 

There is a general air of similarity between this pro- 
cedure and the CONVERGENCE mapping, but there are 
also substantial differences. The first resides in evaluat- 
ing coupling terms between phases from the derivatives 
of the score function chosen: although the functional form 
remains that of a dependence on triplet and quartet phase 
invariants, the values of the coefficients will incorporate 
the effect of higher-order interactions generated numer- 
ically by the process of ME extrapolation. The second 
resides in the strict book-keeping of the dependence of 
the score on the various phases as the mock basis set is 
being thinned out by elimination. For instance, if a given 
basis-set candidate h forms a triplet with candidates hi 
and h2 there will be an interaction term (from the phased 
LLG for h) involving that triplet invariant; if however h 
comes up for elimination from the mock basis set while hi 
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and h2 remain in it, the phase of h will be integrated out 
to produce an unphased LLG, resulting in quartet terms 
between hi, h2 and any other pair of uneliminated re- 
flexions also involved in a triplet with h. Thus the list 
of interactions never simultaneously contains triplets and 
quartets which are mutually redundant. This desirable fea- 
ture follows naturally from using a globally defined and 
theoretically sound score function, rather than an ad hoc 
score obtained by piecing together indications for sepa- 
rate invariants, with problems of non-independence and 
questionable weighting (see I, §2.2). 

The COBWEB procedure will be described in greater 
detail in a separate publication. 

2.2.2. Optimal sampling of  trial sign and phase combi- 
nations. (i) The need for eJ~cient sampling. The process of 
node expansion is fundamental to the tree-directed multi- 
solution strategy. It bears a clear resemblance to the phase 
permutation methods used since the early days of MUL- 
TAN, but its incorporation into the hierarchical structure 
of a search tree is novel and is related to the neces- 
sity of partitioning structure-factor space into small re- 
gions and of constructing distinct approximations to the 
joint-probability distribution within each region (I, §2.4; 
Bricogne, 1988b, §2). The problem of economizing on 
the number of nodes, or equivalently of finding the most 
efficient partitions of structure-factor space, arises from 
the conflicting requirements of (1) introducing the largest 
possible number of new reflexions in each extension of 
the basis set (to maximize sensitivity) and using the finest 
possible sampling of phase values (to maximize accuracy), 
and (2) keeping under control a combinatorial explosion 
of crippling proportions. 

The converse problem occurs if we want to use the 
Fourier coefficients of the score function with respect to 
a set of phases to calculate a multidimensional Fourier 
'map' giving an approximate value of the score at all 
points of a grid of trial phase combinations: such a map 
will be more useful when more phases can be made to vary 
simultaneously, but this number is severely restricted by 
the fact that even relatively small numbers of phases (e.g. 
12) give rise to unwieldy maps. 

(ii) Previous methods: substantialization and magic 
integers. The very idea of a computerized multisolution 
approach to the phase problem, which may be traced to 
papers by Cochran & Douglas (1953, 1955, 1957) and 
by Vand & Pepinsky (1956), was formulated in response 
to this combinatorial explosion. Its practical implementa- 
tion was limited by the scarcity of computing and graph- 
lcal display resources, which created as urgent a need as 
that which exists today for methods of economizing on 
the number of trial solutions which had to be calculated 
and inspected. Woolfson (1954), working with Huggins 
masks rather than a computer, gave an example of how 
such economy could be achieved by exhibiting a set of 16 
combinations of seven signs with the property that any of 
the 27 " 128 possible combinations of these signs differed 
from one of the given 16 in at most one place. Woolf- 

son gave no proof of his statement other than suggesting 
its brute force verification. In the same year Good (1954) 
coined the term 'substantialization' for this process and 
showed how to construct a set of 2048 combinations of 15 
signs having the same property with respect to the full set 
of 215 = 32768 possible combinations. Good did prove his 
statement but unfortunately he provided no indication as 
to whether these two examples were isolated recreational 
curiosities, or were instead instances of some underlying 
mathematical theory and hence were capable of general- 
ization. I have found that such a theory does indeed exist, 
namely the theory of error-correcting codes (MacWilliams 
& Sloane, 1977) and of the packing and covering prop- 
erties of high-dimensional lattices associated with them 
(Conway & Sloane, 1988) which will be described below 
in (iii). The two examples mentioned above are in fact 
the two simplest Hamming single-error correcting codes, 
Woolfson's being the [7,4,3] code [described in Shannon 
& Weaver (1949, pp. 80)] and Good's the [15,11,3] code, 
where the notation [n,k,d] is explained in (iii) below. 

Later, in the course of developing the MULTAN pro- 
gram, White & Woolfson (1975) showed how the 'phase 
correlation function' of Riche (1970, 1973), similar to cri- 
teria defined for centric cases by Cochran & Douglas, 
could be surveyed by means of a Fourier summation in 
much fewer dimensions than the number of independent 
phases or symbols. This economy was achieved by defin- 
ing several phases qol, q02, . . . ,  q0n in terms of a single 
symbol x by means of congruential relations of the form 

~i = 2~rmix (mod 27r). (2.26) 

Certain 'magic' integer sequences ml, m2, ..., mn were 
found to produce smaller systematic errors in this rep- 
resentation than others of comparable size. Main (1977, 
1978) gave a quantitative analysis of this phenomenon in 
terms of the shape of the Voronoi region associated to each 
of the n-dimensional lattice points representing the n-tuple 
of phases defined by regularly spaced sample values of x. 
This analysis will be seen within the context of coding 
theory [see (iii) below] to have come quite close to a re- 
formulation of the optimal sampling problem as a search 
for 'magic' high-dimensional lattices with optimal pack- 
ing, covering or quantizing properties. It may have been 
hampered by its adherence to the rigid mode of represen- 
tation (2.26) in which each phase depends on one symbol 
only. As will be shown below, the optimal solutions may 
be viewed as matrix analogues of the magic-integer repre- 
sentation, with several generator symbols all contributing 
to defining all phases. 

(iii) A new method: magic lattices from coding theory. 
Let the latest extension of the basis set H consist of m re- 
flexions, ma of which are acentric and mc of them centdc; 
denote by n = 2ma + mc the total number of real com- 
ponents of the associated structure factors (the 'number 
of degrees of freedom'), and by • the vector made up of 
the m phases. Assume for the sake of definiteness that the 
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score function of interest for the trial values of • is the 
Bayesian score B(~) defined at the end of § 1.3. By virtue 
of its periodicity, B can be expressed as an m-dimensional 
Fourier series 

B(~)--  ~-~GKexp(iK.~). (2.27) 
K 

Here each K denotes an m-tuple of indices (kl, k2 ..... kin) 
with kj an unrestricted integer if the corresponding phase 
is acentric, and ky -- 0 or 1 if it is centric. The coefficients 
GK have Hermitian symmetry (i.e. G-K -- Gx) because B is 
real-valued. Those multi-indices K likely to contribute the 
most to B (which constitute the spectrum of B, hereafter 
denoted Spec B) are a subset of those for which IKI -- 
~mlkyl is small, and a list of them can be compiled by 
the scheduling routine COBWEB (§2.2.1). Typically IKI is 
at most 3 or 4 but the effect of higher-order terms will be 
present in the values of the coefficients Crg if the previous 
basis set was already fairly large. 

The optimal sampling problem may then be rephrased 
as follows: what is the most economical 'grid' of ~I, val- 
ues on which to either (1) carry out accurate pointwise 
evaluations of B(~) so that the dominant Gx can be ex- 
tracted from the score values by m-dimensional Fourier 
analysis (see §2.2.4); or (2) calculate a Fourier synthesis 
giving approximate values of B(~) from the partial list of 
coefficients GI~ compiled by COBWEB so as to avoid or 
minimize aliasing, and thus allow good interpolation to 
locate the peaks of B. The naive answer to this question is 
that the Shannon criterion should be satisfied along each 
phase independently. In the typical case where no Ikjl ex- 
ceeds 1 this would require at least 2'nc4 ma -- 2 n grid points 
for a full set of sign and quadrant phase combinations. Ob- 
serve that this grid is the 'unit cell' of an m-dimensional 
crystal made up by repeating the motif B(~) for these grid 
points by the translations of a rectangular periodizing lat- 
tice having two division points along each centric phase 
and four along each acen~c phase. The naive Shannon 
criterion then ensures the absence of overlap along each 
phase axis between the projections of translates of Spec B. 

At this point 'the miraculous enters' [to quote Conway 
& Sloane (1988)]: some unexpected properties of high- 
dimensional lattices can be exploited to achieve spectacu- 
lar savings. Recall that the essence of Shannon's criterion 
is to prevent overlap of lattice translates of Spec B so 
that sampling at the points of the reciprocal lattice should 
lose no information. This criterion, however, needs only 
be met in m-dimensional space rather than in each one- 
dimensional principal projection. This remark prompts one 
to use m-dimensional periodizing lattices which give a 
much denser packing of translates of Spec B so that the 
sampling lattice, which is reciprocal to the periodizing 
lattice, will be much looser and yet will retain the same 
amount of information about Spec B as the conventional 
rectangular lattice. 

In dimension 3 this method would consist (Bricogne, 
1992a, §1.3.2.2.2.1) of periodizing a Bragg sphere of 

structure factors by the translations e.g. of a face-centered 
lattice (with optimal packing properties) rather than a 
primitive lattice, and computing electron densities on a 
body-centered grid (with optimal covering properties). Be- 
sides saving about a third on computation, this method 
would provide much better interpolation in real space than 
the ordinary rectangular sampling since each grid point 
would have 12 nearest neighbours rather than six. 

In dimension m >> 3 the possible gains increase dra- 
matically. From the point of view of m-dimensional crys- 
tallography this phenomenon corresponds to the existence 
of centered lattice modes with high multiplicities and large 
holohedries, giving rise to very dense, highly symmetrical 
packings; the reciprocal (sampling) lattices then have opti- 
mal covering properties, i.e. have Voronoi regions with the 
smallest outer diameter, and allow high-quality interpola- 
tion because of the large number of nearest neighbours 
(called the 'kissing number') around each point. Certain 
values of m are especially favourable. For m = 7 and m 
-- 8 the 'root lattices' E7 and E8 have multiplicities of 
8 and 16 respectively; their duals E~ and E~ -- E8 have 
kissing numbers 126 and 240 instead of 14 and 16 for 
their rectangular counterparts. For m -- 24 the Leech lat- 
tice achieves the extraordinary gain in packing efficiency 
of 224 compared with the rectangular lattice, and gives a 
sampling grid with kissing number 196560 rather than 48. 

Coding theorists have long taken advantage of the ex- 
istence of such lattices to construct error-correcting codes. 
In the simplest case this consists of choosing a subset of 
2 k combinations of n binary digits (0 or 1) called 'words' 
among the 2 n possible ones in such a way that any two dis- 
tinct words differ in at least d places. Many of these codes 
are linear, i.e. consist of the linear span of k n-dimensional 
binary vectors under modulo 2 arithmetic. Such a code, de- 
noted [n,k,d], may be viewed as a centered lattice mode 
in dimension n, the n - k linear relations satisfied by its 
points modulo 2 being parity checks expressing the 'reflex- 
ion conditions' of that lattice. There are numerous other 
types of codes (MacWilliams & Sloane, 1977). Some of 
them are non-linear, and the notation (n,M,d) is used to de- 
note a non-linear code comprising M codewords of length 
n with minimum distance d. 

These connections between lattices and codes, and their 
use in optimizing the sampling of trial phase combinations, 
will be described in full detail in a separate publication. 
They will be shown to lead to the best possible sampling 
schemes (as gauged by the shape of their Voronoi region), 
surpassing the performance of the best magic-integer se- 
quences. 

2.2.3. Methods of node expansion. Several options are 
available in BUSTER for generating the progeny of a given 
node, which should be self-explanatory in the light of 
the previous section and will in any case be described in 
more detail elsewhere. They are listed below as keywords 
followed by the relevant parameters. 

(1) Full permutation (~0, A~,  nm~x): creates one node 
per point of a standard rectangular grid, each centric 
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phase being given its two possible values while acentric 
phases run (in o) from go0 in steps of Ago; this gener- 
ates 2'nc(360/Ago) 'no progeny nodes, with n = 2ma + mc < 
nnm, the latter being the maximum number of degrees of 
freextom to be activated in the expansion. 

(2) Hadamard code (nmax): creates 2nmax progeny nodes 
from the rows of an nmax x nmax Hadamard matrix and 
their complements, where n = nmax - 1 or n = nmax; each 
row is made up of + and - signs, a centric reflexion using 
up one sign to define one of its restricted phases, and an 
acentric reflexion using up two signs to define a quadrant 
phase. The values of nnm currently supported are 4, 8, 12, 
16, 24, 32. When the last bit is not used the corresponding 
code is said to be 'punctured', i.e. obtained by deleting a 
given coordinate from each original codeword. 

(3) Reed-Muller code (r, m): creates a progeny node for 
each of the 2 k words of the rth-order binary Reed-Muller 
code of length nmax -- 2 m, where k is given by the sum 
of binomial coefficients k = 1 + (~  + (~  + ... + (~. The 
binary digits of these codewords are translated into phase 
combinations in the same way, interpreting 0 as + and 1 
as -. For r = 1 these codes are Hadamard codes of length 
2 m. The RM(1,3) and RM(2,4) codes are respectively 
[8,4,4] and [16,11,4] codes whose punctured versions are 
the [7,4,3] and [15,11,3] Hamming single-error-correcting 
codes; these have a covering radius of 1, which gives rise 
to the 'substantialization' property mentioned in §2.2.2 (i). 

(4) Golay code: this generates 4096 codewords of 
length 24 forming a [24,12,8] code called the extended 
Golay code; the Golay code itself is the [23,12,7] code 
obtained by puncturing the former by removal of any one 
of the coordinates. These codes have covering radii of 4 
and 3 respectively, giving rise to a staggering efficiency 
of substantialization: any of the 224 = 16777216 (223 = 
8388608) combinations of 24 (23) signs differ in at most 
4 (3) places from a suitable word of these codes. They are 
translated into phase combinations as above. 

(5) Nordstrom-Robinson code: this ILrst generates the 
extended Golay code, then shortens it by 8 bits in a spe- 
cial way to produce 256 words of length 16 forming a 
(16,256,6) non-linear code called the Nordstrom-Robinson 
code; this in turn can be punctured into a (15,256,5) code. 
They have covering radii of 4 and 3 respectively so that 
their substantialization properties, although less spectacu- 
lar than those of  the Golay codes, are still quite 
attractive. 

(6) Survey node list (go0, Ago, nnm, /max): this option 
activates the conversion of the relevant phase interactions 
compiled by COBWEB for a segment of m reflexions 
corresponding to at most nmax degrees of freedom into 
a list of m-dimensional Fourier coefficients, as explained 
in §2.2.2 (ii). An m-dimensional Fourier synthesis is then 
calculated on a rectangular grid defined by go0 and Aq0 as 
in (1) to produce a map of a 'synthetic' score approxi- 
mating the true score; these scores are then tag-sorted and 
the trial phase sets associated with the grid points with 
the top /max (typically 32) scores are used to create the 

progeny of the parent node. This procedure is being up- 
graded by the introduction of magic-lattice sampling of 
the synthetic score map (thus allowing higher values of 
nmax for a given memory size) and by locating the peaks 
of this map rather than simply selecting the top values. 
This option can be recognized as a modern version of the 

map of White & Woolfson (1975), with some advan- 
tages: the map will give a better synthetic score because 
the coefficients are evaluated from derivatives of the true 
score at the position of the parent node, rather than at the 
origin of structure-factor space; the magic-lattice sampling 
is the most efficient possible; and the mapping from rect- 
angular to magic-lattice coordinates is smooth (because of 
dimension-preserving) and thus does not distort peaks; in 
contrast the magic-integer mapping (2.26) is not smooth 
(because of dimension-collapsing) and induces shearing 
of the peaks. 

(7) An enhancement of the previous method has been 
developed which first determines the rank of the list of 
m-dimensional indices attached to the input Fourier coef- 
ficients by means of an elimination process. This yields a 
redefinition of all the phases involved in terms of indepen- 
dent symbols, together with a detailed description of which 
symbols are likely (1) to have a single optimal value, or 
(2) to have a discrete multiplicity of equally optimal val- 
ues, or (3) to have little or no effect on the synthetic score. 
The generation of progeny nodes can then exploit this in- 
formation by designing permutation schemes for symbols 
under categories (2) and (3) which will allow the accurate 
scores subsequently calculated for these nodes to resolve 
the degeneracies of the synthetic scores. The algebraic ba- 
sis and the applications of this method will be described 
in a separate publication. 

2.2.4. Methods of progeny-score analysis. Once all the 
nodes belonging to the progeny of a given parent node 
have been evaluated, some decisions have to be made as 
to whether preferred values for certain phases or combi- 
nations of phases are being indicated by the distribution 
of the scores LLG(v) or B(v) attached to these nodes. 

At this stage it must be recalled that LLG in the di- 
agonal approximation is defined by (2.18) as a sum of 
logarithms of probability ratios calculated for a sample 
of observed values of structure-factor amplitudes in the 
second neighbourhood of the basis set. As such it is it- 
self a random variable since different samples drawn from 
a population with a given theoretical distribution (which 
would combine both statistical dispersion and measure- 
ment errors) will in general yield different values of LLG. 
This intrinsic randomness of LLG results in the possibil- 
ity that LLG(~0) may be greater than LLG(7-(I) even if 
(~  l) is true because of the chance fluctuations in LLG(7-/0) 
and LLG(7-/I). It is therefore of the utmost importance to 
compare the 'observed' value of LLG with the statistical 
distribution of its fluctuations so as to gauge the level of 
significance of any indication of preference for (~1) over 
(7-/0). This significance level is defined as the probability 
that the observed LLG be due to statistical fluctuations in 
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LLG(7~0) and LLG(~l)  rather than to the change of dis- 
tribution associated with the alternative hypothesis (~l'~l). 

From a practical point of view, this implies that any 
rejection of a hypothesis regarding trial phase values (i.e. 
any priming of the phasing tree) should only be carded out 
on the basis of a significance test found to be conclusive 
at a pre-set significance level. To quote Cochran & Cox 
(1957, p. 5): 'A useful property of  a test of  significance is 
that it exerts a sobering influence on the type of  experi- 
menter who jumps to conclusions on scanty data, and who 
might otherwise try to make everyone excited about some 
sensational [effect] that can well be ascribed to the ordi- 
nary variation in his experiment.' This word of caution 
needs to be borne in mind at all times, especially when 
working with known structures - as is necessary when 
developing and testing a new method - if it is to be en- 
sured that no advantage is being taken of the fact that the 
answer is known in advance. Even then, 'insider dealing' 
remains possible in that such knowledge may exert an in- 
direct influence on certain strategic choices which would 
otherwise be highly uncertain, and thus may lead to illu- 
sory successes which cannot be reproduced on unknown 
structures. It is therefore imperative to make the priming 
of the phasing tree an automatic, quantitative and totally 
objective process. 

In the present work no attempt has been made to 
calculate the theoretical variance of the LLG and to thus 
ascertain absolute significance levels: these are strongly 
dependent on the proper estimation of the 'effective' num- 
ber of atoms which, in the macromolecular case, requires a 
careful study. I have instead adopted an empirical stand- 
point in which the set of scores attached to the various 
phase assumptions are Fourier-analysed with respect to the 
phases involved, and the largest Fourier coefficients are 
tested for significance against variances estimated from 
the sample itself. 

The simplest instance of this procedure consists of de- 
tecting the effect of the sign of the real component of a 
single centric reflexion. Let #* and #- denote the aver- 
ages of the scores attached to the nodes where this sign is 
÷ and - respectively, and let V* and I,'- denote the vari- 
ances of the scores in these two subsets. Then the first 
Fourier coefficient of the two-point Fourier transform is, 
up to a factor of 1/2, the contrast (#÷ - #-). Its signif- 
icance level is the probability that it could arise solely 
from statistical fluctuations of the score in each subset (as 
measured by V* and V-) if the two distributions of score 
had the same theoretical mean #. It can be calculated by 
a Student t-test, as described for instance by Press et al. 
(1986, pp. 484-488). The same procedure can be applied 
to the detection of effects associated with products of sev- 
eral signs, the averages and variances being computed for 
the two subsets of nodes where that product is + or -. 
For acentric reflexions a general Fourier transform (e.g. 
on four or six points) can be applied, provided the phase 
values have been sampled accordingly. It is interesting to 
note that if the sample phase values of an acentric reflex- 

ion are chosen by 'quadrant permutation' (qo -- 45 ° + k 
x 90 °, k = 0, ..., 3) the resulting origin-shifted four-point 
transform can be rearranged into a tensor product of two 
two-point transforms, along the real and imaginary com- 
ponents respectively of the complex phase factor: then the 
phases of acentric reflexions may be handled as a pairs 
of  signs within the same binary formalism as centric re- 
flexions. This approach, first programmed and extensively 
tested in BUSTER, was recently implemented in the MICE 
program and successfully applied to the determination of 
several powder structures (see e.g. Shankland et al,, 1992). 

In the general case where scores have been evaluated 
on a rectangular grid or at the points of a lattice defined 
by a linear code, the Fourier coefficients are calculated 
by a multidimensional Fourier analysis. If the sample of 
scores has been evaluated at points defined by a non-linear 
code, the coefficients are calculated by least squares. The 
coefficients are then tested for significance. 

2.3. Methods of  origin and enantiomorph specification 
2.3.1. Enantiomorph control. When dealing with non- 

centrosymmetric crystals of small molecules, the ini- 
tial enantiomorph ambiguity is usually broken by fixing 
the sign of the imaginary part of the structure for one 
enantiomorph-sensitive (or chiral) reflexion whose phase 
is sufficiently strongly coupled to others for its chirality 
to propagate. When dealing with macromolecular crystals, 
the weakness of phase interactions implies that this mech- 
anism can no longer be relied upon: a critical amount of 
chiral phase information must be allowed to accumulate 
before enantiomorph differentiation becomes locked in. 

The phasing tree affords a convenient 15ractical solution 
to this problem: letting the pool of competing nodes de- 
velop until the chirality of each node becomes unambigu- 
ous. Chirality is treated as a logical attribute of each node, 
with the property of being hereditary since any descendant 
of a chiral node is chiral. It is ensured at each level of node 
expansion that the collection of trial values for the new 
phases is globally invariant under enantiomorph switch. If 
a parent node is chiral, its entire progeny is chiral and there 
can be no duplication among them. If a parent node is non- 
chiral, its progeny is examined to determine which nodes 
remain non-chiral and which become chiral; the latter do 
so in pairs, and are duly marked so that only one member 
of each pair is subsequently evaluated (its scores are later 
copied to the other member prior to progeny score analy- 
sis) and possibly subjected to further expansion. When a 
mean absolute phase difference from a reference phase set 
is to be evaluated for a chiral node, it is calculated for both 
possible enantiomorphs and the smallest value is taken. 

Another method is to expand the root node using the 
survey node list option [§2.2.3, method (6)]. The synthetic 
score map will be symmetric under central inversion in 
the 'chiral subspace' spanned by the ma imaginary parts 
of the acentric structure factors. The highest pairs of dis- 
tinct peaks related by this symmetry will correspond to 
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chiral phase sets, and selecting one peak in each pair in 
a consistent manner (i.e. with a positive coordinate in a 
direction along which the pairs are maximally separated) 
will fix the enantiomorph. Those peaks whose coordinates 
in the chiral subspace are all zero give rise to non-chiral 
nodes, so that the same procedure needs to be applied at 
the next level of expansion. 

This scheme of 'deferred' enantiomorph discrimination 
gives a robust solution to the initial problem, the price to 
pay being the possible occurrence of a mixture of different 
enantiomorphs in the pool of nodes, which has to be sorted 
out in the late stages. 

2.3.2. Deferred origin definition. A new algebraic 
method has been developed and implemented to determine 
whether a given collection of reflexions can determine the 
origin of a given space group uniquely, and if not, to de- 
scribe algebraically the remaining degree of ambiguity. 
This procedure is valid for all space groups, centrosym- 
metric or not, primitive or not. It will be described in a 
separate publication. 

It is well known that some structures may possess pseu- 
dosymmetries, sometimes so strong as to produce super- 
structure effects. In this case the top of the priority list 
compiled by COBWEB will contain reflexions belonging 
to a sublattice of the reciprocal lattice, and it will be nec- 
essary to use reflexions very far down that list in order to 
define the origin 'uniquely'. This uniqueness may then be 
largely illusory since the behaviour of the strongest terms 
will for some time be almost unaffected by the choice of 
origin: any decisions (e.g. tree pruning) taken during that 
time may then lead to the loss of origin coherence in the 
node pool. 

This nettle may be grasped in the same way as that relat- 
ing to enantiomorph choice. The reflexions are considered 
in strict order of priority, and the new algebraic procedure 
mentioned above is used to describe the degree of ambigu- 
ity which persists in the joint definition of origin and enan- 
tiomorph when a given phase set, belonging to a possibly 
non-primitive collection of reflexions, has been specified. 
This algebraic descriptor is related to the subgroup struc- 
ture of the normalizer of the space group of the crystal. It 
is then treated as a node attribute whose properties under 
'inheritance' are slightly more complex that those of chi- 
rality but can be exploited in the same way. The phasing 
tree is therefore developed on the basis of the strongest in- 
teractions available at each stage; origin and enantiomorph 
definition then occur at their own pace, i.e. when, and 
only when, the relevant pseudosymmetry-breaking phase 
interactions become dominant. The sampling designs have 
to be symmetrized with respect to the invadance group 
(i.e. the relevant subgroup of the normalizer) attached to 
the parent node before being applied to the expansion of 
that node, and redundant evaluations of progeny nodes are 
avoided by a supervision mechanism which generalizes 
that described for enantiomorph control. In particular, the 
residual ambiguity will induce some m-dimensional crys- 
tallographic symmetry in the synthetic score map, which 

may be exploited to save space and computation. This re- 
mark shows once again [as in §2.2.2 (ii)] that the design 
of optimal strategies to solve the phase problem leads nat- 
urally to problems in m-dimensional crystallography! 

This radical procedure avoids all the well known pitfalls 
which result from prematurely assuming that origin and 
enantiomorph have been irreversibly specified. 

3. Program description 
This is only a brief outline, as the program will be de- 
scribed in more detail elsewhere. 

3.1. Initialization stage 
The following information is read from an external file 

to define the characteristics of the structure to be solved 
and provide the main guidelines as to the strategy to be 
followed. 

(1) Cell geometry: the constants defining the direct 
lattice are read, and are used to calculate the reciprocal- 
lattice constants and the metric tensors of both lattices. 

(2) Space-group symmetry: the name of the space group 
is read, its first letter being interpreted as a code for 
the lattice mode; the transformations themselves are read, 
without replication by centering translations (if any); the 
multiplication table and inverse table of the group are set 
up; a list is drawn of all the possible isotropy subgroups, 
and for each such subgroup a list of unique coset repre- 
sentatives is compiled to allow non-redundant symmetry 
expansions. 

(3) Chemical composition: the number and type of scat- 
terers in the asymmetric unit are read; standard scatterers 
have their scattering factors defined by tabulated coeffi- 
cients; it is also possible to have user-defined group scat- 
terers, described by a subroutine returning increments to 
crl(h) and cr2(h) for any given h; provision is made for 
entering fragments defining a partial structure at this stage. 

(4) Solvent correction parameters: mean macromolec- 
ular electron density, mean solvent electron density, and 
solvent temperature factor. 

(5) Resolution limits for accepting reflexion data from 
the external file. 

(6) Definition of the sequence of data 'shells' which 
will be used in the successive stages of phase generation. 
These shells must be nested, i.e. each must strictly contain 
the previous ones. A shell is characterized by separate 
lower and upper resolution limits for data normalization, 
for basis-set selection and for likelihood evaluation; by E- 
value thresholds for defining weak, medium and strong 
reflexions in the charting of phase interactions; by the 
specification of the method of phase permutation to be 
used in the expansion of nodes, and of various constants 
pertaining to that method; and by the specification of a 
method of analysis of the scores (LLG or B) attached to the 
progeny of each node for the purpose of inferring phase 
information, together with a significance-level threshold 
for accepting these phase indications. 
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The program then initializes all the pointers involved 
in the book-keeping of the phasing tree and creates a null 
node corresponding to a void basis set. 

3.2. Data input and preparation 

This comprises three main stages. 
(1) Read h, IF] °bs, tr(IFI °b~) and if available (for com- 

parison purposes only) Ib~c I and qo talc. It should be noted 
that all the calculations to be described below use IF] °bs, 
not Ib~Cl! For each h, determine its symmetry attributes 
(isotropy type, centric character and phase restriction) and 
store them. Apply solvent correction if required. 

(2) Calculate initial values of the scale factor k and 
temperature factor B required to put the solvent-corrected 
data on absolute scale and compute I U] and IEI values. 
Rough values of k and B are first obtained by means of a 
Wilson plot, then refined by likelihood maximization in a 
routine MLNORM, described in §2.1.3, which carries out 
all likelihood evaluations and optimizations. 

(3) Generate the list of associated Miller indices to be 
used in the frequent re-evaluation of structure-factor vari- 
ances in the diagonal approximation by means of structure- 
factor algebra (§2.1). 

3.3. Survey of phase interactions and ranking of basis- 
set candidates 

This crucial step is carded out in routine COBWEB, 
whose logic was described in §2.2.1. The strongest inter- 
actions are those coming from the modulation of variances 
through (2.9a,b), leading to .Ul-type interactions, and from 
the modulation of first moments through (2.3), leading to 
triplet-type and quartet-type interactions for phased and 
unphased LLG's, respectively. 

3.4. Origin definition 
Origin definition is carded out as follows: 
(1) Reflexions are considered in order of priority as po- 

tential contributors to origin defirdtion (§2.3.2). Deferred 
origin definition is almost but not totally implemented. 

(2) Once origin-defining reflexions (if any are needed) 
have been chosen, phases are assigned to them, in accor- 
dance with their known values if these are available; care 
is then taken to shift all available known phases so as to 
give all acentric origin definers a zero phase value and thus 
avoid introducing spurious enantiomorph-sensitive infor- 
mation. 

(3) The root node of the phasing tree (level 1) is created 
from these choices. If no origin-defining reflexions are 
needed, this remains the null node. 

(4) The remaining candidate reflexions are re-ranked by 
COBWEB, preventing the basis-set reflexions from being 
eliminated. 

This completes the initialization stage of the calcula- 
tion. It results in a pooled node list at level 1 containing 
a single node, the root node. At subsequent levels this 

list will contain many nodes, those of them deemed to be 
worthy of further expansion being marked as 'seed' nodes. 

3.5. Basic recursion mechanism 
Let us take as an 'induction hypothesis' that, at the 

completion of level n, there are at most eight nodes in 
the pooled node list at level n which have been marked 
as 'seed' nodes. The number eight has no special signif- 
icance beyond that of having kept most test calculations 
performed so far within manageable size while not prov- 
ing damagingly restrictive. In some cases this number can 
be made self-adjusting (see below, step 3). 

For n -- 1 there is one such node (the root node), which 
is duly marked as a seed node so recursion can start. It 
now proceeds through the following steps. 

1. Choose a segment of new reflexions and add it to the 
previous basis set to make up the basis set at level n 
+ 1. Prepare all data which depend only on level, such 
as the list of reflexions in the second neighbourhood, 
and the list of associated Miller indices to be used in 
computing (by structure-factor algebra) the covariances 
between the basis-set structure factors in order to solve 
the maximum-entropy equations. 

2. For each seed node in the pooled node list: 
2.1. Create the progeny of that node by permuting the 

phases of the new reflexions according to the method 
specified for the current shell. 

2.2. For each progeny node ~,: 
2.2.1. Solve the maximum-entropy equations to con- 

struct qvtb ~E. This is achieved in routine MAXIMS 
by the duality method (Agmon et al., 1979) as 
described in §2.1.1. 

2.2.2. Calculate the log-likelihood gain LLG(t,) and 
the Bayesian score B(v). 

2.2.3. Analyse the dependence of LLG(~,) or B(t,) 
on the permuted phases by the method specified 
for the current shell. Select phase indications at 
chosen significance level. 

2.2.4. Cull the progeny according to the selected 
phase indications or substitute the phases and re- 
evaluate as in steps 2.2.1 and 2.2.2. 

3. Pool surviving nodes, sort them on LLG(~,) or B(~,), 
and mark the top eight (or fewer) as seed nodes. The 
marking of obvious losers can be avoided by calculating 
the exponentials of the pooled node scores, normalizing 
them so they add up to 1 and interpreting them as prob- 
abilities: the marking of the top nodes as seed nodes 
is then stopped when the remaining nodes account for 
(say) less than 1% of the total probability. 

The induction hypothesis is now fulfilled with n re- 
placed by n + 1. 

3.6. Higher levels of control 
Higher levels of control can be achieved by: 
(1) Recursion on shells: if at step 1 the end of the 

ranked candidate list is reached, the next shell specified in 
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Table 1. Test o f  ab initio phase determination on 
platynecin 

Basis-set history 

Level m n 
! 3 3 
2 I1 16 
3 18 29 
4 25 42 
5 33 56 
6 41 70 

C O N F E R E N C E  P R O C E E D I N G S  

New reflexions included 
3 I o, 506,  0 4 9  
208,  220,  2 6 5 , 4 4 5 ,  463 ,  643,  5 1 8, 530  
7 1 0 , 3 3 8 , 5 1 9 , 7 1  1 , 4 2 2 , 4 2 1 0 , 4 4 1  
4 5 1 , 5 2 6 ,  1 7 5 , 2 0 2 ,  1 7 1 , 1 6 7 ,  1310 
9 I I, 823,  808,  628,  558,  7 1 10, 820,  92 I 
7 5 3 , 7 6 1 , 6 1 6 , 7 0 2 , 7 4 2 , 5 2 7 , 7 5 0 , 3 7 9  

successive levels 
Phase Phase error Cumulative 

of  merit error in A/'2(H) probability 
48.80045 59.695 86 .753  0.433158 
48.80039 14.812 46.467 0.866291 
46.90649 51.550 81 .974  0.931471 
46.90642 6.667 35 .024  0.996645 
42.62264 59.695 84 .436  0.997544 
42.62262 14.812 38 .407  0.998443 
41.76640 " 67.195 89 .526  0.998825 
41.76636 22.312 52 .372 0.999207 

91.60087 53.825 55.048 0.500036 
91.60072 8.147 24.224 I.OO0000 
73.39848 47.395 55.635 1.000000 
73.39845 14.577 33.703 1.000000 
72.08923 10.793 32.248 I.O00000 
72.08908 51.179 57.234 I.O00000 
70.74586 19.694 36.137 I.OO0000 
70.74561 65.825 66.817 I.O00000 

92.73958 10.410 34.982 0.463907 
92.73522 60.019 71.709 0.925798 
89.87247 59.521 71.701 0.952178 
89.87243 10.907 34.903 0.978556 
88.97218 56.794 60.052 0.989278 
88.96849 8.534 24.791 0.999960 
82.45014 61.419 71.084 0.999976 
82.44959 13.159 37.524 0.999992 

113.33800 49.204 61.735 0.493145 
113.33773 19.362 37.433 0.986158 
109.07172 18.248 39.857 0.993079 
109.07076 47.473 60.779 0.999993 
I01.44053 48.359 58.198 0.999997 
101.44035 17.362 38.799 1.000000 
95.21426 50.359 65.449 I.O00000 
95.21358 17.111 41.337 I.O00000 

- 125.14119 19.555 40.889 1.000000 
- 234.50043 54.410 69 .552  1.000000 
-234.50247 19.460 47 .645  1.000000 
-241.63847 21.966 53 .962  1.000000 
- 246.85487 20.778 52 .167  1.000000 
-246.89444 52.831 70 .949  1.000000 
- 255.36122 51.252 74 .556  1.000000 
- 255.38322 22.357 50 .100  1.000000 

Tops  o f  pooled node lists at 
Figure 

Level N o d e  Parent 
2 7* 
2 9* 
2 8* 
2 6* 
2 31 
2 30 
2 11 
2 12 

3 129" 
3 67* 
3 141 
3 79 
3 7O 
3 132 
3 85 6 
3 147 8 

4 208* 67 
4 239* 129 
4 240* 129 
4 209* 67 
4 221" 129 
4 190" 67 
4 246 129 
4 215 67 

5 353* 221 
5 260* 190 
5 259* 190 
5 352 221 
5 349 221 
5 256 190 
5 357 221 
5 264 190 

6 456* 259 
6 498 353 
6 467 260 
6 457 259 
6 469 260 
6 500 353 
6 504 353 
6 473 260 

Table 2. Test o f  ab initio phase determination on 
sucrose octaacetate 

Basis-set history 

Level m n New reflexions included 
1 3 3 1 2 1 1 0 , 9 0 1 , 5 9 0  
2 7 7 6 0 6 , 2 0 2 , 0 1 2 4 , 0 6 6  
3 9 !1 151 ,10112  
4 12 15 1 1 0 3 , 8 1 3 0 , 7 6 3  
5 16 20 2 1 7 0 , 1 5 0 , 1 0 5 , 7 8 1  
6 19 25 6 2 7 , 1 3 1 2 0 , 5 1 4 5  

Tops  o f  pooled node lists at 
Figure 

Level N o d e  
2 16 
2 14 
2 8 
2 6 
2 17 
2 12 
2 10 
2 9 

3 208 
3 207 
3 206 
3 222 
3 222 
3 223 
3 209 
3 211 

3 210 

4 284 
4 312 
4 32O 
4 288 
4 346 
4 476 
4 504 
4 480 

5 551 
5 559 
5 543 
5 991 
5 871 
5 623 
5 671 
5 550 

6 1508 
6 1451 
6 1520 
6 1455 
6 1380 
6 1392 
6 1373 
6 1381 

Parent of  merit 
24.65388 
24.35492 
24.04166 
23.62893 
22.23748 
22.08409 
21.75921 
21.63463 

16 31.87217 
16 31.73194 
16 31.65525 
16 31.63401 
16 31.634Ol 
16 31.63214 
16 31.61659 
16 31.51924 
16 31.409Ol 

206 42.38756 
207 42.27244 
207 42.27152 
206 42.26751 
208 42.21553 
222 42.19426 
223 42.19419 
222 42.15837 

284 60.48391 
284 60.36)92 
284 60.21621 
504 60.18473 
476 60.18429 
288 60.15242 
312 60.14440 
284 60.10799 

991 82.90446 
871 82.90424 
991 82.90270 
871 82.90265 
671 82.68206 
671 82.66939 
671 82.40872 
671 82.37637 

successive levels 
Phase Phase error 
error in .~2(H)  
0.000 41.390 

45.000 69.948 
45.000 65.013 
90.000 84.191 
45.000 57.264 
45.000 61.120 
90.000 90.149 
90.000 75.396 

8.567 58.675 
12.467 58.403 
27.467 68.521 
25.033 68.893 
25.033 68.893 
10.033 56.319 
23.567 67.850 
27.467 63.215 
42.467 70.664 

43.011 72.059 
40.367 70.099 
38.184 66.881 
44.377 71.105 
15.611 62.636 
38.011 72.707 
35.367 70.680 
38.243 72.101 

55.669 80.989 
49.239 76.555 
48.746 75.845 
47.592 76.897 
56.346 82.264 
52.229 76.185 
46.915 76.735 
69.515 83.454 

47.475 81.648 
48.225 83.445 
47.661 81.534 
48.411 83.405 
46.925 81.558 
47.366 81.249 
58.175 82.336 
52.550 85.254 

the input is created. The survey of interactions and ranking 
of new candidates is carried out as in §3.3, inhibiting the 
elimination of reflexions already in the basis set, and the 
desired segment is taken from the top of this new list. If 
no next shell is specified, the calculation terminates. 

(2) Supervision of enantiomorph control and (presently) 
of deferred origin definition. 

4. Status report on current capabilities 

4.1. Examples and results 
The test calculations presented here are to be seen 

more as demonstrations of the use of BUSTER than as 
genuine results. They are summarized in Tables 1-3 by a 
recapitulation of the history of the basis-set enlargement 
at successive levels of the phasing tree, m denoting the 
number of reflexions and n the number of degrees of 

freedom, and a listing of the top eight nodes of the pooled 
node list at each level. In Table 1 a subset of these top eight 
nodes is sometimes chosen by a cumulative probability 
cutoff, the nodes selected in this way being shown by an 
asterisk; in the other two cases all eight top nodes are 
expanded and no asterisk is used. 

4.1.1. Platynecin. Platynecin is a small acentric struc- 
ture used as a test by Gilmore et al. (1990). It crystallizes 
in P212121 (a = 7.81, b = 8.35, c = 12.46 A) with 11 
non-hydrogen atoms in the asymmetric unit. All data to 
0.80 A were used. Node expansion was carried out by the 
survey node list method with up to 14 degrees of free- 
dom per segment, acentfic phases being sampled at 30 
+ 60 k degrees. The top 32 synthetic scores were used 
for node expansion, and the progeny nodes were sorted 
on Bayesian score (defined at the end of §1.3) after their 
accurate evaluation. 
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Table 3. Test of ab initio phase determination for 
crambin 

Basis-set h is to~  

Level m n New reflexions included 
1 3 4 1 0 0 , 0 0 1 , 1 1 0  
2 12 19 4 0 0 , 2 0 0 , 6 1 4 , 7 2 4 , 6 3 4 , 7 4 4 , 3 0 0 , 9 3 4 , 5 3 4  
3 21 35 0 0 8 , 0 4 4 ,  - 1 3 4 , 4 0 4 , 4 4 0 , 5 5 0 , 1 0 2 5 , 1 1 5 1 ,  - 4 3 4  
4 30 50 9 2 0 , 1 0 0 4 , 4 0 6 , 7 3 3 , 1 0 2 3 , 1 2 1 1 , 1 6 1 0 , 2 0 6 , - 6 4 1  
5 38 ~ 4 4 4 , 8 1 0 , 2 5 0 , 4 1 8 , 9 1 3 , 1 2 3 0 ,  I 1 2 1 , - 7 6 3  
6 48 82 2 4 3 , 5 6 2 , - 2 0 5 , 4 5 6 , 3 3 7 , 4 0 5 , 5 0 5 , 0 6 2 , 1 1 0 3 , - 1 3 2 5  
7 56 97 3 3 4 , 3 6 0 , 1 0 1 6 , 1 1 1 5 , - 1 0 4 1 , 0 2 6 , 5 2 8 , - 1 0 1  
8 65 112 - 6 5 4 , - 6 2 5 , 1 2 4 3 . - 1 1 2 2 , - 1 1 4 2 , - 1 3 1 2 , - 3 0 4 ,  

-405,-308 

Tops of  pooled node lists at su~essive levels 

Level Node Parent 
2 4 
2 15 
2 8 
2 14 
2 22 
2 23 
2 2 
2 28 

3 126 
3 223 23 
3 144 14 
3 98 8 
3 231 23 
3 233 23 
3 151 14 
3 220 23 

4 428 220 
4 427 220 
4 429 220 
4 340 126 
4 387 151 
4 517 233 
4 412 220 
4 356 144 

5 709 428 
5 654 427 
5 740 429 
5 628 412 
5 701 428 
5 692 428 
5 681 427 
5 691 428 

6 814 654 
6 978 709 
6 868 681 
6 827 654 
6 905 692 
6 992 709 
6 914 692 
6 809 654 

7 1117 827 
7 1076 814 
7 1135 868 
7 1273 992 
7 1078 814 
7 1099 827 
7 1042 809 
7 1209 914 

8 1306 1076 
8 1401 1117 
8 1470 1209 
8 1338 1078 
8 1423 1117 
8 1441 1135 
8 1402 1117 
8 1308 1076 

Figure Phase Phase error Cumulative 
of  merit error in A/'2(H) probability 
21.00938 36.406 84.696 0.144474 
20.88882 61.423 I01.063 0.272539 
20.79058 38.170 85.872 0.388622 
20.70145 75.594 94.645 0.494805 
20.67354 69.423 102.602 0.598066 
20.49953 73.466 96.064 0.684835 
19.79727 56.406 82 .041  0.727826 
19.75916 42.577 91.366 0.769209 

41.89569 67.287 92.384 0.027248 
41.76482 76.322 91.936 0.051154 
41.74904 75.482 92.787 0.074686 
41.72868 57.287 90 .181  0.097744 
41.70387 86.322 94.907 0.120236 
41.70050 68.322 91.204 0.142652 
41.65844 72.322 92.305 0.164146 
41.65089 63.243 87.343 0.185478 

54.38519 58.389 88.070 0.464195 
52.09603 75.503 87.332 0.511242 
52.02784 67.394 88.017 0.555188 
51.79845 77.263 92.840 0.590126 
51.75230 80.433 93.140 0.623488 
51.71685 77.766 92.326 0.655688 
51.50346 74.769 88.719 0.681700 
51.36866 82.540 93.087 0.704433 

79.53835 60.201 87.837 0.523084 
77.39612 67.369 87.109 0.584490 
77.32279 63.540 87.914 0.641554 
77.29583 66.803 88.903 0.697101 
77.16959 63.055 87.183 0.746060 
76.98388 68.189 88.925 0.786721 
76.76070 73.265 88.069 0.819248 
76.66429 66.700 88.644 0.848786 

73.10498 73.792 87.759 0.120484 
72.47102 68.057 88.586 0.184399 
72.33136 72.533 87.949 0.239983 
72.26581 62.507 86.125 0.292041 
72.11742 76.670 89.903 0.336919 
71.81743 73.572 88.690 0.370166 
71.78978 70.506 89.314 0.402506 
71.69795 66.592 87.193 0.432009 

110.75179 62.952 85.767 0.470695 
110.35623 72.534 87 .411  0.787617 
109.22388 71.465 87.522 0.889753 
108.02380 72.347 88 .151  0.920513 
107.74713 71.925 88 .801  0.943839 
107.24278 65.669 85.394 0.957925 
106.55161 69.138 86.667 0.964982 
106.40523 69.744 88.848 0.971078 

92.19655 75.062 87.969 0.802646 
90.07094 68.508 88.099 0.898450 
88.90709 69.742 89.234 0.928367 
88.34831 72.694 88 .901  0.945478 
88.23022 66.414 87.090 0.960682 
88.18805 75.785 89.539 0.975259 
87.14124 63.276 86.400 0.980376 
87.08044 72.707 87.327 0.985191 

Phase determination proceeded as shown in Table 1. 
The discrimination power of the Bayesian score B is 
excellent. Its sudden decrease between levels 5 and 6 
may be attributed to the phenomenon discussed in §2.1.2, 
namely the near-vanishing of determinants, since at that 

stage we are handling 41 basis-set reflexions for an 11- 
atom structure. The negative values of B are caused by the 
accumulation of phase sampling errors; earlier tests using 
coarser sampling led to arithmetic overflows in the large 
negative B values attached to some nodes. In the present 
case the bottom of the node list at level 6 contained nodes 
with B < -122854.0. 

The final result is excellent, the mean absolute phase 
error being 19.6 ° for all reflexions with IEI >__ 1.8 (the final 
basis set) and 41 o for those in the second neighbourhood, 
which comprise the near-totality of the data. 

4.1.2. Sucrose octaacetate. This structure of 47 non- 
hydrogen atoms in P212121 (a = 18.35, b = 21.44, c -- 
8.35 A) belongs to Sheldrick's data bank of difficult test 
structures. Sheldrick himself used it to calibrate his phase 
annealing procedure (Sheldrick, 1990) where it was by 
no means the easiest of the test cases, giving at best 50 
successes in 10 000 tries. 

All data to 0.80 A were used. Node expansion was 
carded out by the full permutation method with up to five 
degrees of freedom per segment, acentric phases being 
sampled at 45 + 90 k degrees. Phase indications were 
extracted by Fourier analysis of the LLG [defined by 
equation (2.18)] and were selected at the 2% significance 
level. 

Phase determination proceeded more laboriously (see 
Table 2), especially as the early incorporation into the 
basis set of reflexions with large indices makes the FFF 
calculations rather slow. The LLG is nevertheless able to 
produce good phase indications even for small basis sets, 
an encouraging observation in view of the low hit rate of 
phase annealing on this structure. The large phase errors 
in the second neighbourhood indicate the urgent need for 
a phase refinement procedure. 

4.1.3. Crambin. This structure was used in (I) to assess 
the usefulness of maximum-entropy extrapolation for a 
macromolecule. The data set used is the same as in (I): it 
extends only to 1.5 A resolution but is otherwise unusually 
complete and accurate. 

Crambin crystallizes in P21 (a --- 40.96, b -- 18.65, c = 
22.52 A) with 324 non-hydrogen atoms in the asymmetric 
unit, excluding the solvent atoms which have high tem- 
perature factors. The basis-set reflexions were restricted 
to spacings greater than 2.5 A but all data to 1.5 A were 
used to compute log-likelihood gains. 

Node expansion was performed by the survey node list 
method with up to 16 degrees of freedom per segment, 
acentfic phases being sampled at 36 + 72 k degrees. The 
top 32 synthetic scores were used for node expansion, 
and the progeny nodes were sorted on Bayesian score 
following their accurate evaluation. 

The Bayesian score shows good power of discrimina- 
tion (see Table 3), especially in view of the very low res- 
olution (by direct-methods standards) at which the com- 
putation takes place. The accumulation of phase sampling 
errors eventually asphyxiates the search process, as shown 
by the decrease of B between levels 7 and 8. Nevertheless 
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the final basis-set phases obtained (for the 65 reflexions 
with IEI > 1.8 to 2.5 A resolution) are significantly away 
from total randomness. Useful results are thus likely to 
emerge once the coding of the phase-refinement proce- 
dure (by maximization of B with respect to the basis-set 
phases) is completed. 

4.2. Summary of  tests and applications 
The results presented above are of a preliminary nature 

but they should be viewed together with those obtained 
in collaboration with Chris Gilmore and coworkers and 
with Charles Carter and coworkers (see Introduction). A 
number of clear conclusions then emerge. 

(1) The tree-directed multisolution strategy is a versatile 
computational procedure capable of dealing in a fully au- 
tomatic fashion with a wide variety of problems, whether 
decisions can be taken very early (as with small molecules) 
or have to be deferred until unpredictably large amounts 
of phase information have accumulated. 

(2) The phase-extension capabilities of constrained 
entropy maximization are very substantial and keep in- 
creasing as phase information accumulates. For macro- 
molecules, the availability of a good approximation to 
the molecular envelope has a profound influence on the 
strength and quality of this extrapolation (Xiang et al., 
1993) as had been anticipated on theoretical grounds (I, 
§8.3; II, §2.3; see also §5.2 below). 

(3) The log-likelihood gain and the Bayesian score are 
extremely powerful statistical criteria for the early discrim- 
ination of good trial phase sets, even for macromolecules, 
provided care is taken to maximize their sensitivity to 
these phases by appropriately scheduling the growth of 
the basis set. 

(4) The statistical analysis of scores and the selection 
of significant phase indications is a robust and automatic 
procedure which enhances the usefulness of these scores. 
In a recent application to a powder structure (Shanldand et 
al., 1992), a large number of nodes with high LLG values 
were obtained in the first round of phase permutation, 
between which no clear choice was possible. Applying the 
t-test removed many of these nodes. Among the survivors 
the node with the highest LLG (by a comfortable margin) 
gave an essentially perfect map, and the others all showed 
useful amounts of correct structure. By contrast all nodes 
deleted by the t-test, some of which had higher LLG's 
than some of the survivors, were devoid of correct detail. 
Furthermore the correct node turned out to have the lowest 
entropy of all, the node with maximum entropy being 
devoid of any correct detail. 

To conclude, the main difficulty in direct macromolec- 
ular phasing seems to reside not in any deficiencies of the 
statistical criteria available in BUSTER - since the tests 
carded out on the SAYTAN phase sets for APP (Gilmore, 
A. N. Henderson & Bricogne, 1991) show that the LLG 
possesses outstanding powers of discrimination for large 
basis sets - but rather in conducting sufficiently thor- 

ough searches through the vast number of trial phase sets 
pertaining to such large basis sets and in preventing the 
accumulation of phase sampling errors through phase re- 
finement. The chances of reliable success are therefore 
likely to depend critically on the full implementation of 
the efficient phase sampling methods described in §2.2.2, 
using magic lattices or non-linear error-correcting codes, 
and of the phase refinement method described below in 
§4.4. The implementation of the full likelihood function 
mentioned in §2.1.3 would undoubtedly afford further help 
by giving a more discriminating score. 

4.3. Summary of  methodological developments 
The main guiding principle in this work has been 

that the shortest path to the most powerful and efficient 
solution to the phase problem resides in the correct iden- 
tification of the underlying mathematical phenomena, fol- 
lowed be a systematic computer implementation structured 
around these phenomena. This quest for optimality has led 
to the following developments. 

(1) Previous methods of calculation of joint-probability 
distributions of structure factors have been replaced by the 
powerful saddlepoint approximation (based on maximum- 
entropy distributions of random atomic positions). This 
method is optimal in the sense that it is as accurate for 
arbitrary feasible structure-factor values as the Edgeworth 
series was for vanishingly small values. 

(2) The a priori probability of a set of trial phase values 
has been supplemented by a powerful statistical criterion, 
the log-likelihood gain (LLG), which measures the degree 
of corroboration of the phase assumption by biases present 
in the distribution of the unphased amplitudes and there- 
fore consults much more data in the critical early stages of 
phase determination. This criterion is an optimal figure of 
merit by the Neyman-Pearson theorem, and can be com- 
bined with the entropy loss to provide a Bayesian score. 
The latter also enjoys optimality with respect to minimiza- 
tion of the risk attached to accepting or rejecting various 
trial phase sets. 

(3) The hierarchical exploration of the space of all pos- 
sible phase sets is represented by the growth of a search 
tree, whose nodes label the various trial phase sets, the 
maximum-entropy distributions associated with them, and 
local expansions of the LLG and the Bayesian score with 
respect to groups of yet inactive phases. The latter expan- 
sions have been used to schedule optimally the inclusion 
of new reflexions into the basis set so as to maximize the 
sensitivity of the score to the next set of trial phases and 
also to provide approximate functional expressions of the 
scores as multidimensional Fourier series. 

(4) The design of efficient sampling schemes capable 
of varying large numbers of trial phases simultaneously, 
or of allowing the survey of multidimensional Fourier 
series approximations to the LLG or Bayesian score, has 
been based on the theory of error-correcting codes which 
provides an optimal generalization of previous methods 
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(substantialization and magic integers). This approach can 
afford gains of several orders of magnitude in sampling 
efficiency. 

(5) The decision-making process involved in accepting 
or rejecting trial phase sets in the course of a structure 
determination has been made entirely automatic and ob- 
jective by Fourier-analysing the score values and assessing 
the significance level attached to the various coefficients. 

(6) New techniques for handling systems of modular 
linear equations with integer coefficients have been iden- 
tified and applied to the problems of origin definition 
(with possible deferment) and of quantifying the degree 
of multimodality inherent in systems of phase relations. 

(7) Finally a general multidimensional Fourier trans- 
form procedure has been implemented which can accom- 
modate any number of dimensions and any number of 
division points along them. It has been applied to the 
computation of approximate scores and to the analysis of 
accurate node scores. 

The generality and optimality of these additions to pre- 
vious approaches endow them with an unusual degree of 
permanence and stability, so that large-scale programming 
efforts can confidently be undertaken on their basis. 

4.4. Forthcoming developments 

In the immediate future the programming efforts in 
BUSTER will concentrate on consolidating the existing 
features and seeking improved performance in the phasing 
of difficult small structures. These comprise: 

(1) phase refinement by maximization of the log- 
likelihood gain or of the Bayesian score with respect to 
the basis-set phases; the necessary derivatives can all be 
calculated by structure-factor algebra (as will be shown in 
the sequel to II) and most of the computer code is already 
in place; this should greatly reduce the rate of accumula- 
tion of phase error with increasing basis-set size; 

(2) calculation of a full likelihood criterion, without di- 
agonal approximation, for which an analytical expression 
has been obtained; 

(3) no longer fitting the constraints of the entropy max- 
imization problem exactly but only to the point where the 
Bayesian score reaches a maximum; this will already pro- 
vide a first round of refinement of the basis-set phases; 

(4) improving the quality of the local approximation to 
the Bayesian score by a multidimensional Fourier series, 
particularly in conjunction with (2); 

(5) exploiting the multidimensional crystallographic 
symmetries induced into the synthetic score map by the 
actions of the space-group normalizer and of its subgroups 
(§2.3.2) so as to avoid redundant computations at this 
stage; 

(6) optimizing the use of symmetry in the calculation 
of ordinary crystallographic Fourier transforms, which are 
heavily used in solving the maximum-entropy equations; 
numerous new and efficient algorithms are described in the 
new volume B of International Tables for Crystallography 
(Bricogne, 1992a) which are awaiting implementation. 

As far as macromolecular structures are concerned, 
there are strong theoretical reasons to expect that an ab- 
solute prerequisite to successful ab initio phasing without 
extraordinary data resolution will hinge on the proper char- 
acterization and exploitation of solvent regions, which in 
turn will require the implementation of the multichannel 
formalism described in §5.1 below. 

5. Perspectives: the Bayesian programme 
The conclusions reached above in §4.2 apply only to 
the hardest form of the phase problem, namely ab initio 
phase determination. With many macromolecular struc- 
tures, however, it is often the case that a wide variety of 
sources of phase information may be available which, al- 
though too weak individually to enable the structure to be 
solved, could be used to prime or guide a statistics-driven 
phasing process. 

From the converse point of view it can be argued 
that the standard phasing methods of macromolecular 
crystallography (isomorphous replacement, molecular re- 
placement, solvent flattening and non-crystallographic 
symmetry averaging) tend to be somewhat deficient in the 
various forms of statistical analysis leading to the phase 
probability distributions through which they pool and com- 
municate phase information. In most cases the sources of 
phase uncertainty can be traced back to an underlying sta- 
tistical model involving randomly positioned scatterers, 
whose distribution often needs to possess varying degrees 
of non-uniformity which the usual treatments (typically 
based on Wilson statistics) are unable to accommodate. 
The mathematical apparatus described in §2.1 is an obvi- 
ous candidate to provide the statistical techniques which 
had hitherto been missing in each of the standard methods. 

It is precisely this rationale which motivated the synthe- 
sis, within a Bayesian theory of structure determination, 
between direct methods and conventional macromolecular 
methods presented in (II). The work described above has 
brought closer the actual implementation of this 'Bayesian 
programme' and has provided an infrastructure for its 
rapid development. This section will give an overview 
of the various components of this interface with standard 
methods and of the bonuses which can be expected. 

5.1. Multichannel formalism 
The present implementation of structure-factor statistics 

in BUSTER already accommodates (§2.1.3) any heteroge- 
neous chemical composition - provided all atoms have 
the same non-uniform distribution of random positions - 
as well as the possibility of specifying a partial structure. 

The main new ingredient described in (II) is a 'mul- 
tichannel formalism' which can accommodate not only 
different types of atoms (specified by their scattering fac- 
tors), but also different non-uniform spatial distributions 
for each atom type. This is the minimum prerequisite for 
a proper statistical treatment of solvent effects in macro- 
molecular crystals. It can also accommodate the possibil- 
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ity of varying the scattering factors of certain subsets of 
atoms between different sets of intensity data collected 
from the same unknown crystal structure, as specified 
by a matrix of scattering factors. The treatment then en- 
compasses the multiple isomorphous replacement (MIR) 
and multiwavelength anomalous-dispersion (MAD) meth- 
ods which vary the scattering factors of localized sub- 
stituents, as well as the contrast variation method which 
modifies that of the solvent. Finally, the possible existence 
of non-crystallographic symmetry and/or of multiple crys- 
tal forms can be accommodated by generalizing Bertaut's 
structure-factor algebra so as to include the action of the 
geometric operations relating the crystallographically in- 
dependent copies of the unknown macromolecule in the 
crystal(s). 

From a programming point of view the implemen- 
tation of the multichannel formalism requires only 
benign modifications of the existing code, and leaves in- 
tact the general structure of BUSTER as far as solving the 
maximum-entropy equations is concerned. 

5.2. Solvent flatness and contrast variation 

Devising a correct statistical treatment capable of 
allowing for the existence of solvent regions in macro- 
molecular crystals is a particularly intractable problem 
for conventional direct methods. The latter would use 
the same uniform distribution for solvent atoms (with 
high temperature factors) and macromolecule atoms (with 
low temperature factors) yielding a 'random soup' model 
which would completely fail to represent the fact that the 
two types of atoms are totally segregated. 

The multichannel formalism, on the other hand, has no 
difficulty in providing a satisfactory statistical model once 
an approximate molecular envelope function is known 
or assumed. This model provides new insights into the 
power of the solvent-flatness constraint in macromolecu- 
lar crystallography (II, §2.3). By structure-factor algebra 
(§2.1.0) the covariances between contributions emanating 
from neighboufing reciprocal lattice points can be a sub- 
stantial fraction of unity, since they are obtained as sample 
values of the Fourier transform of the molecular envelope 
near its origin peak. As the number N of atoms increases, 
the width of this origin peak remains roughly constant in 
reciprocal lattice units, so that the large covariances due 
to solvent regions remain close to unity as N increases. 
In classical direct methods, this would correspond to the 
existence of IEI values of order N 1/: - an unforeseen cir- 
cumstance which, as argued in §8.3 of (I), indicates that 
probabilistic methods should be useful for macromolecules 
even at low or medium resolution. 

Entropy maximization under the extra constraint of 
solvent flatness specified by a molecular envelope can 
therefore be expected to be stronger than in the absence of 
this constraint, and to produce more accurate extrapolated 
phases since solvent flatness will be enforced in advance 
during phase extension; this is clearly preferable to doing 
so a posteriori by iteratively masking the electron-density 

map by the molecular envelope function, as is done in 
conventional solvent flattening (Bricogne, 1974; Schevitz, 
Podjarny, Zwick, Hughes & Sigler, 1981; Wang, 1985; 
Leslie, 1987). 

A converse to this enhanced extrapolation is that like- 
lihood tests can be applied to the initial estimation or the 
subsequent refinement of the molecular envelope. The sen- 
sitivity of this envelope-detection method will be greatly 
enhanced if X-ray contrast variation data can be measured 
(Carter, Crumley, Coleman, Hage & Bricogne, 1990): in- 
deed it was the anticipation of the crucial role which the 
availability of a precise envelope was likely to play in 
the direct phasing of macromolecules which motivated the 
work described in this article. I have derived an expres- 
sion for the likelihood function attached to a putative en- 
velope, or to a parametrized modification of an existing 
envelope, and incorporating either native data alone or a 
series of contrast variation measurements. As pointed out 
by Carter et al. (1990), anomalous scattering by the sol- 
vent can be exploited to obtain more information about the 
envelope. The use of such anomalous scattering at several 
wavelengths is also a possibility if synchrotron radiation 
is available, and these measurements can themselves be 
incorporated into the likelihood function. This work will 
be reported in greater detail elsewhere. 

5.3. The MIR and MAD methods 

The multichannel formalism offers a natural framework 
for numerous statistical treatments of these methods, but 
only those amenable to quasi-immediate implementation 
will be dealt with here. 

I have shown elsewhere (Bricogne, 1991c,f) that 
a maximum-likelihood treatment of the heavy-atom 
parameter refinement problem in the MIR method pro- 
vides an optimal and definitive answer to a conundrum 
[the bias problem, see Blow & Matthews (1973)] which 
had plagued - or at least greatly inconvenienced - most 
macromolecular crystallographers for the past 25 years. 
This approach is the only one capable of refining the pa- 
rameters measuring the lack of isomorphism of the vari- 
ous derivatives in a stable fashion. I have supplemented 
this study with the design of a method for detecting heavy 
atoms and checking for minor sites as the parameter refine- 
ment proceeds, which will be published separately. This 
approach can also be applied to the MAD method where 
it provides a sounder statistical treatment than is currently 
available, present methods (P~aler, Smith & Hendrickson, 
1990) being known to lead to inflated figures of merit. 

Once the best possible heavy-atom parameters have 
been obtained, there remains the problem that the resulting 
phase indications are most often ambiguous because of 
varying degrees of bimodality in most of the acentric 
phase probability distributions. The standard solution to 
this problem is to use centroid structure factors (Blow & 
Crick, 1959) which minimize the root-mean-square error 
in the final map and may thus be viewed as a damage- 
limitation measure. 
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By contrast the multisolution strategy implemented in 
MICE and BUSTER gives access to a much more radical 
attack on the problem of bimodality. 

(1) Resolving the residual phase ambiguity present in a 
strongly bimodal phase probability density belonging to a 
large acentric reflexion may be viewed as a binary choice; 
simultaneous choices of modes for several reflexions may 
be sampled efficiently by the methods of §2.2.2 and used 
for node expansion within the tree-search mechanism as 
in §2.2.3. 

(2) The ranking of the resulting nodes can be made 
more effective by using an 'enriched' likelihood function 
in which the MIR or MAD phase probability densities 
are used as weights in the integrations of conditional 
probability distributions over the phases or signs of the 
second neighbourhood reflexions (§2.1.3). The resulting 
likelihood measures the extent to which the phases extrap- 
olated from each combination of binary choices of modes 
in the basis set agree with one of the modes for each 
second neighbourhood reflexion. 

This adaptation of the tree-search mechanism to the 
systematic resolution of MIR and MAD phase ambigui- 
ties should yield a very powerful method indeed. I have 
derived expressions for the necessary 'enriched' likeli- 
hoods, assuming that the phase information available at 
each stage from the MIR or MAD methods has been en- 
coded by means of the ABCD coefficients of Hendrickson 
& Lattman (1970), and they are being tested by Charles 
Carter and coworkers. It is worth noting, in passing, that 
the method proposed by Hendrickson ( 1971) for producing 
the best ABCD coefficients attached to a phase probabil- 
ity distribution P(q0) given numerically, namely a least- 
squares fit between logP(cp) and IogPABco(qO) using P(qo) 
as a weighting function, consists precisely of maximizing 
the relative entropy of PABCO(~) with respect to P(qo). 

A last remark concerning the MAD method is in order. 
Because it exploits only one configuration of anomalous 
scatterers, it is unable to phase reflexions for which the 
transform of that constellation of scatterers is weak. This 
gives rise to 'blind regions' in reciprocal space with van- 
ishingly small figures of merit. In the MIR method this 
problem is mitigated by the fact that several inequivalent 
configurations of heavy atoms are involved. A corollary 
to this observation is that, even in the most favourable 
circumstances, the MAD method would have to rely on 
some other procedure for propagating phase information 
from those reflexions where it is strongly indicated to 
those in the blind region where it is essentially absent. 
The maximum-entropy extrapolation which accompanies 
the systematic tree search described above will perform 
this task in an optimal fashion. 

5.4. The molecular replacement method 
The multichannel formalism provides a means of defin- 

ing an LLG criterion suitable for the detection of known 
structural fragments in an unknown crystal (II, §4.1). I 

have shown (Bricogne, 1992b) that the crudest approxi- 
mation to this LLG yields the Patterson correlation coef- 
ficient, which has recently been used with great success 
by a number of authors (Fujinaga & Read, 1987; Briinger, 
1990). This equivalence holds when no phase informa- 
tion is available and when the atoms not belonging to the 
fragment are assumed to be uniformly distributed in the 
asymmetric unit. The LLG will be superior to the Patter- 
son correlation coefficient as soon as phase information is 
available or has been assumed. 

The recycling of fragments into the phase determination 
process can be accomplished by means of conditional 
distributions of structure factors and of the associated 
LLG criteria, which can incorporate the exclusion of the 
remaining random atoms by the fragment. 

This statistical formulation also allows a new approach 
to the fragment detection problem, involving joint rota- 
tional and translational searches with successive subdivi- 
sions of the search grid instead of the conventional se- 
quential searches on rotations first, then translations. 

If the expected gain in detection sensitivity produced 
by the use of LLG criteria actually materializes, it may 
well allow the detection of rather small super-secondary 
structure motifs, thus offering the possibility of attempting 
protein structure determination by systematically search- 
ing through a library of such motifs derived by a cluster 
analysis of known structures in the Brookhaven data bank. 

5.5. Non-crystallographic symmetry 
The exploitation of non-crystallographic symmetries 

(Rossmann & Blow, 1963) by real-space symmetry aver- 
aging (Bricogne, 1974, 1976) to assist phase determination 
has been a substantial advance in macromolecular crystal- 
lography. It has been used to solve the structures of a large 
number of proteins [see Wilson, Skehel & Wiley (1981) 
for a particularly difficult case], and made it possible to 
solve the first virus structures to high resolution (Bloomer, 
Champness, Bricogne, Staden & Klug, 1978; Harrison, 
Olson, Schutt, Winkler & Bricogne, 1978). Although the 
method has also succeeded in providing some degree of 
phase extension in situations of high symmetry (Nordman, 
1980; Gaykema, Volbeda & Hol, 1985; Hogle, Chow & 
Filman, 1985; Arnold, Vriend, Luo, Griffith, Kamer, Er- 
ickson, Johnson & Rossmann, 1987), this process is slow 
and unstable, and does not allow an ab initio phase de- 
termination. 

It was shown in (II, §5) that the real-space treatment of 
non-crystallographic symmetries given earlier (Bricogne, 
1974) could be incorporated into the statistical framework 
of the saddlepoint method, and thus couple the phase im- 
provement capabilities of the former to the powerful phase 
extrapolation properties of the latter. The mechanism of 
this synergy is to be found in the generalized structure- 
factor algebra (Appendix of II) by virtue of which the cor- 
relation coefficient between structure factors belonging to 
reflexions whose orbits under the combination of local and 
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global symmetries contain a pair of points closer than the 
spacing between integral lattice points can be arbitrarily 
close to unity. 

The strong modulation of covariances by local symme- 
tries can be used to detect and characterize these sym- 
metries by generalized intensity statistics. I describe in 
Bricogne (1992b) how the rotational parts of these sym- 
metries can be deduced from the distribution of 'spikes' 
of intensity through reciprocal space, while their transla- 
tional components are related to the modulation of inten- 
sity along the directions of these spikes. 

The enrichment of the statistical correlations between 
structure factors by non-crystallographic symmetries re- 
suits in conditional distributions for non-basis structure 
factors with great power of phase extension, enforcing the 
constraints of non-crystallographic symmetry and solvent 
flatness in advance rather than after the fact as in the itera- 
tive procedures used by Nordman (1980), Gaykema et al. 
(1985), Hogle et al. (1985) and Arnold et al. (1987). The 
implementation of this combined method may therefore 
well be the key to the long-awaited ab initio determina- 
tion of virus structures. 

Finally it was pointed out in §6 of (II) that this statis- 
tical formalism can deal with the occurrence of multiple 
crystal forms, and could in particular be applied to the ex- 
ploitation of non-isomorphous heavy-atom derivatives for 
phasing purposes. 

5.6. Model refinement 

I have advocated (Bricogne, 1991b, 1992b) the use of 
the LLG as a residual for conducting structure refinement 
from an atomic model, rather than the residual currently 
used (the inverse-variance-weighted square of the ampli- 
tude difference), as the LLG alone is capable of taking 
into account the uncertainty on the phases of the calcu- 
lated structure factors. 

This amounts to recommending that the refinement pro- 
cesses be viewed as an instance of LLG maximization, as 
described in §2.1.3, with a small residual population of 
random atoms. The maximum-likelihood scaling feature 
provided by MLNORM will be useful in maintaining an 
appropriate level of discrepancy between calculated and 
observed amplitudes (thus avoiding bias) when variable 
numbers of atoms are put in the random atom pool, with 
strongly non-uniform distributions, for the purpose of cal- 
culating omit maps. Similarly, the LLG-gradient maps are 
proposed as optimal difference maps to replace the usual 
2Fo - Fc maps. 

5.7. Scope of  future applications 

The possibilities of upgrading very substantially each 
and every aspect of conventional phasing methods through 
their interface with the multichannel maximum-entropy 
formalism have been examined separately in the previous 
sections. Considered together, they give a clear indication 
that the progressive implementation around the existing 

BUSTER code of the 'Bayesian programme' formulated in 
(II) should result in a gradual but considerable strengthen- 
ing of crystallographic methodology as a whole and lead 
to an increasingly unified, effective and dependable pro- 
cedure of macromolecular structure determination. 

6. Concluding remarks 

The specific questions addressed in this work are: (1) 
can the crystallographic determination of macromolecular 
structures be turned by new mathematical developments 
into a routine computational procedure capable of operat- 
ing from native data alone, as has long been the case with 
most small molecules? and (2) if routine success cannot 
be achieved, e.g. if exceptional data quality turns out to 
be an absolute prerequisite, can such computational de- 
velopments nevertheless yield a substantial increase in the 
speed and dependability of present methods? 

At the time of writing, an affirmative answer to the first 
question cannot be given. However there are many encour- 
aging signs that the new elements of mathematical tech- 
nology described here offer considerable fresh potential 
towards at least a partial solution of the ab initio phasing 
of macromolecules which BUSTER has only begun to tap. 

As for the second question, it is clear that a step- 
wise implementation of the Bayesian statistical theory 
encompassing all phasing procedures formulated in (II) 
around the central core of optimal mathematical tech- 
niques available in BUSTER is now possible. This brings 
most standard macromolecular phasing techniques - par- 
ticularly isomorphous replacement, molecular replacement 
and non-crystallographic symmetry averaging - tantaliz- 
ingly close to radical improvements in their scope and 
phasing power, with only time and manpower shortage 
standing in their way. 

Both outcomes, in whatever order they occur, will bring 
about a major enhancement of the overall ability of the X- 
ray crystallographic machinery to provide essential struc- 
tural information in fields such as enzymology, immunol- 
ogy, virology, gene expression and cell architecture. But 
above all it would have a decisive influence in determin- 
ing whether structural results will be obtained in the future 
at a sufficient pace to support the full exploitation of the 
genetic information which will be produced by genome 
projects during the next two decades. 

I wish to thank Dr Chris Gilmore and Professor Charles 
Carter for innumerable discussions as well as for their 
staunch commitment to sharing the risks involved in these 
methodological explorations. I am grateful to IBM UK 
(Winchester) and to Biostructure SA (Strasbourg) for par- 
tial financial support in the course of this work, and to 
Trinity College, Cambridge, for providing an excellent 
working environment. I would also like to thank the editor 
and the referees for their useful and constructive sugges- 
tions on ways of presenting some of the material included 
in this paper. 
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